STATEMENT OF BASIS (AI No. 27823)

for draft Louisiana Pollutant Discharge Elimination System permit No. LA0050695 to discharge to waters of the State of Louisiana.

THE APPLICANT IS: Air Liquide Large Industries U.S. LP

Plaquemine Facility

2700 Post Oak Blvd., Suite 1800

Houston, TX 77056

ISSUING OFFICE: Louisiana Department of Environmental Quality (LDEQ)

Office of Environmental Services

Post Office Box 4313

Baton Rouge, Louisiana 70821-4313

PREPARED BY: Jenniffer Sheppard

Water & Waste Permits Division Telephone:(225)219-3135 jenniffer.sheppard@la.gov

DATE PREPARED: December 14, 2005

1. PERMIT STATUS

A. Reason For Permit Action: Proposed reissuance an existing Louisiana Pollutant Discharge Elimination System (LPDES) permit for a five year term following regulations promulgated at LAC 33:IX.2711/40 CFR 122,46*.

* In order to ease the transition from NPDES to LPDES permits, dual regulatory references are provided where applicable. The LAC references are the legal references while the 40 CFR references are presented for informational purposes only. In most cases, LAC language is based on and is identical to the 40 CFR language. 40 CFR Parts 401-402, and 404-471 have been adopted by reference at LAC 33:IX.4903 and will not have dual references. In addition, state standards (LAC Chapter 11) will not have dual references.

<u>LAC 33:IX Citations:</u> Unless otherwise stated, citations to LAC 33:IX refer to promulgated regulations listed at Louisiana Administrative Code, Title 33, Part IX.

<u>40 CFR Citations:</u> Unless otherwise stated, citations to 40 CFR refer to promulgated regulations listed at Title 40, Code of Federal Regulations in accordance with the dates specified at LAC 33:IX.4901, 4903, and 2301.F.

B. NPDES permit - NPDES permit effective date: N/A

NPDES permit expiration date: N/A

EPA has not retained enforcement authority.

C. LPDES permit - LPDES permit effective date: April 1, 1998

LPDES permit expiration date: March 31, 2003

D. Date Application Received: January 13, 2003. Additional information received on November 7 and 17, 2005, and January 27, 2006.

2. FACILITY INFORMATION

A. FACILITY TYPE/ACTIVITY - ambient air separation plant

According to the application, Air Liquide Large Industries U.S. LP, Plaquemine Facility, is an ambient air separation plant that manufactures oxygen, nitrogen, and argon.

B. FEE RATE

1. Fee Rating Facility Type: minor

Complexity Type: II
 Wastewater Type: III

4. SIC code: 2813

C. Continuous Facility Flow

Max 30 Day Continuous Flow - 0.65 MGD (updated by November 7, 2005 letter)

- D. LOCATION 57805 Evergreen Road in Plaquemine, Iberville Parish Latitude 30°14'32", Longitude 91°11'47"
- E. Technology Basis (40 CFR Chapter 1, Subchapter n/Parts 401-402, and 404-471 have been adopted by reference at LAC 33:IX.4903.)

Guideline

<u>Reference</u>

Inorganic Chemicals

40 CFR 415

Manufacturing Point Source Category

(Subpart AW - Oxygen & Nitrogen Production)

The provisions of this Subpart are applicable to discharges resulting from the production of oxygen and nitrogen by air liquidification. Currently, the amount of oxygen produced is 2.8 million pounds per day and the amount of nitrogen produced is 6.1 million pounds per day.

Other sources of technology based limits:

LDEQ Stormwater Guidance, letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6).

LPDES Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activities, LAR100000

LPDES Light Commercial General Permit, LAG480000

Louisiana Water Quality Management Plan for Sanitary Dischargers.

LDEO Sanitary General Permits

Best Professional Judgement

3. OUTFALL INFORMATION

Outfall 001

Discharge Type: the discharge of process and non-process area stormwater and previously

monitored effluent from Internal Outfall 101 consisting of cooling tower blowdown and treated wastewaters consisting of condensate, floor drains, washdown water, external truck wash water, and previously monitored effluent

from Internal Outfall 301 consisting of sanitary wastewaters.

Treatment: None

Location: at the point of discharge from the final effluent pumps prior to combining with

other waters (Latitude 30°14'26", Longitude 91°11'52").

Flow: Continuous, (Max 30-Day) 0.5966 MGD

Discharge Route: Bayou LaButte via local drainage

Basin & Segment: Terrebonne Basin, Subsegment 120201

Internal Outfall 101

Discharge Type: the discharge of cooling tower blowdown, and treated wastewaters consisting of

condensate, floor drains, washdown wastewater, external truck washwater, and previously monitored effluent from Internal Outfall 301 consisting of treated

sanitary wastewater.

Treatment: treatment of condensate, floor drains, washdown water, and external truck wash

water consists of an oil/water separator. Cooling tower blowdown is not treated.

Location: at the point of discharge from the wastewater sump prior to combining with the

waters of Final Outfall 001 at Latitude 30°14'26", Longitude 91°11'52".

Flow: Continuous - 0.5 MGD

Discharge Route: Final Outfall 001, thence to Bayou LaButte via local drainage

Basin & Segment: Terrebonne Basin, Subsegment 120201

Internal Outfall 301

Discharge Type: the discharge of treated sanitary wastewater.

Treatment: treatment of sanitary wastewater consists of an activated sludge package

treatment unit

Location: at the point of discharge from the treatment facility prior to combining with the

waters of Final Outfall 001 at Latitude 30°14'26", Longitude 91°11'52".

Flow: Continuous - 1,500 GPD

Discharge Route: Final Outfall 001, thence to Bayou LaButte via local drainage

Basin & Segment: Terrebonne Basin, Subsegment 120201

4. RECEIVING WATERS

STREAM - Bayou LaButte

a. TSS (15%), mg/L: 12.20

b. Average Hardness, mg/L CaCO₃: 348.00

c. Critical Flow, cfs: 0.1 d. Mixing Zone Fraction: 1

e. Harmonic Mean Flow, cfs: 3.21

f. River Basin: Terrebonne, Segment No. 120201

g. Designated Uses:

The designated uses are primary contact recreation, secondary contact recreation, and fish and wildlife propagation.

Information based on the following: Water Quality Management Plan, Volume 5A, 1994; LAC 33:IX Chapter 11;/Recommendation(s) from the Engineering Section. Hardness and 15% TSS data come from a random sampling site on Bayou LaButte near the city of Plaquemine at the bridge on State Highway 1, 4.3 miles south of Plaquemine. This information was presented in a Memorandum from Brian Baker to Jenniffer Sheppard dated September 8, 2005.

5. PROPOSED CHANGES FROM CURRENT LPDES PERMIT

- a. Outfall 001 Water quality limits were place on Final Outfall 001 for Total Dissolved Solids based lab analyses from ten month of TDS data performed by Air Liquide Large Industries U.S. LP (See Appendix B) and a water quality screen (See Appendix A). In accordance with LAC 33:IX1109.D.1., a three (3) year compliance schedule has been included to allow Air Liquide time to come into compliance with water quality standards. This parameter shall be sampled once (1) per quarter by grab sample.
- b. Internal Outfall 101 Mass limitations for Oil and Grease have decreased due to a decrease in oxygen and nitrogen production.

6. EXISTING EFFLUENT LIMITS

Outfall 001 - stormwater and previously monitored sanitary wastewater (301) and process wastewaters (101).

Parameter	Monthly Average	Dally Maximum	Frequency	Sample type
Flow (MGD)	Report	Report	1/month	Measure
тос		50 mg/L	1/month	Grab
Oil & Grease		15 mg/L	1/month	Grab
TDS		Report	1/3 months	Grab
pH		6.0-9.0 s.u.	1/month	Grab

Outfall 101 - process wastewaters and previously monitored sanitary wastewater (301).

Parameter.	Monthly Average		Frequency	Sample type
Flow (MGD)	Report	Report	1/month	Estimate
TOC		50 mg/L	1/month	Grab
Oil & Grease		15 mg/L	1/month	Grab
Oil & Grease	22.5 lbs/day	45 lbs/day	1/month	Grab
Additives	Report	Report	1/month	Inventory

Outfall 301 - the discharge of treated sanitary wastewater.

Parameter	Monthly Average	Daily Maximum		Sample type
Flow (MGD)	Report	Report	1/ 6 months	Estimate
BOD₅		45 mg/L	1/ 6 months	Grab
TSS		45 mg/L	1/ 6 months	Grab
Fecal Coliform colonies/100 ml		400	1/ 6 months	Grab

7. PROPOSED EFFLUENT LIMITS

The following section sets forth the principal facts and the significant factual, legal, methodological, and policy questions considered in preparing the draft permit. Also set forth are any calculations or other explanations of the derivation of specific effluent limitations and conditions, including a citation to the applicable effluent limitation guideline or performance standard provisions as required under LAC 33:IX.2707/40 CFR Part 122.44 and reasons why they are applicable or an explanation of how the alternate effluent limitations were developed.

A. <u>TECHNOLOGY-BASED VERSUS WATER QUALITY STANDARDS-BASED EFFLUENT</u> LIMITATIONS AND CONDITIONS

Following regulations promulgated at LAC 33:IX.2707.L.2.b/40 CFR Part 122.44(I)(2)(ii), the draft permit limits are based on either technology-based effluent limits pursuant to LAC 33:IX.2707.A/40 CFR Part 122.44(a) or on State water quality standards and requirements pursuant to LAC 33:IX.2707.D/40 CFR Part 122.44(d), whichever are more stringent.

B. TECHNOLOGY-BASED EFFLUENT LIMITATIONS AND CONDITIONS

Regulations promulgated at LAC 33:IX.2707.A/40 CFR Part 122.44(a) require technology-based effluent limitations to be placed in LPDES permits based on effluent limitations guidelines where applicable, on BPJ (best professional judgement) in the absence of guidelines, or on a combination of the two. Air Liquide Large Industries U.S. LP, Plaquemine Facility is subject to Best Practicable Control Technology Currently Available (BPT) and Best Available Technology Economically Achievable (BAT) effluent limitation guidelines listed below:

Guideline Reference
Inorganic Chemicals 40 CFR 415
Manufacturing Point Source Category (Subpart AW - Oxygen and Nitrogen Production)

The provisions of this Subpart are applicable to discharges resulting from the production of oxygen and nitrogen by air liquidification. Currently, the amount of oxygen produced is 2.8 million pounds per day and the amount of nitrogen produced is 6.1 million pounds per day.

Regulations require permits to establish monitoring requirements to yield data representative of the monitored activity [LAC 33:IX.2715/40 CFR 122.48 (b)] and to assure compliance with permit limitations [LAC 33:IX.2707.I./40 CFR 122.44(I)].

The following section explains the rationale for the permit limitations and monitoring frequencies stated in the draft permit.

Outfall 001 - the discharge of process and non-process area stormwater and previously monitored effluent from Internal Outfall 101 consisting of cooling tower blowdown and treated wastewaters consisting of condensate, floor drains, washdown water, external truck wash water, and previously monitored effluent from Internal Outfall 301 consisting of sanitary wastewaters.

Parameter	Monthly Average	Daily Maximum	Frequency	Sample type	Regulatory Basis
Flow (MGD)	Report	Report	1/month	Measure	LAC 33:IX.2707.I.1.b
тос		50 mg/L	1/month	Grab	BPJ; MSGP; current LPDES permit
Oil & Grease		15 mg/L	1/month	Grab	BPJ; MSGP; current LPDES permit
TDS*	Report mg/L	Report mg/L	1/quarter	Grab	BPJ; current guidance; current LPDES permit
TDS**	873.095 mg/L	2072.767 mg/L	1/quarter	Grab	BP3; lab analyses; current LPDES permit; water quality standards
pН		6.0-9.0 s.u.	1/month	Grab	BPJ; MSGP; current LPDES permit

- * Beginning on the effective date of the permit and lasting approximately three years into the permit.
- ** Beginning approximately three years from the effective date and lasting until permit expiration.

Treatment: None

Flow

The reporting monthly average and daily maximum flow is retained from the current LPDES permit and is based on LAC 33:IX.2707.I.1.b. The measurement frequency of once per moth and the sample type of measure is also retained from the current permit.

Total Organic Carbon (TOC)

A daily maximum permit limitation for total organic carbon at 50 mg/L is retained from the current LPDES permit due to the presence of stormwater in the discharge and is based on the LDEQ Stormwater Guidance letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6) and the LPDES Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activities, LAR050000, effective on May 1, 2001. The measurement frequency of once per month and the sample type of grab is also retained from the current LPDES permit.

Oil and Grease

A daily maximum permit limitation for oil and grease at 15 mg/L is retained from the current LPDES permit due to the presence of stormwater in the discharge and is based on the LDEQ Stormwater Guidance letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6) and the LPDES Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activities, LAR050000, effective on May 1, 2001. The measurement frequency of once per month and the sample type of grab is also retained from the current LPDES permit.

Total Dissolved Solids (TDS)

Monthly average and daily maximum permit reporting requirements for TDS have been established for the first three years of the permit. The permit also proposes to establish a monthly average limitation of 873.095 mg/L and a daily maximum limitation of 2072.767 mg/L. These values were calculated using data provided by Air Liquide Large Industries U.S. resulting from a ten month TDS study. In accordance with LAC 33:IX1109.D.1., a three (3) year compliance schedule has been included to allow Air Liquide time to come into compliance with water quality standards. This parameter shall be sampled once (1) per quarter by grab sample.

pH

A minimum limit for pH at 6.0 standard units and a maximum limit for pH at 9.0 standard units is retained from the current LPDES permit. The limitation is established to ensure that the discharge does not cause an instream exceedance of the numeric criteria for pH as established by LAC 33:IX.1113.C.1. The pH limitation is also established based on the LDEQ Stormwater Guidance letter dated 6/17/87, from J. Dale Givens (LDEQ) to Myron Knudson (EPA Region 6) and the LPDES Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activities, LAR050000, effective on May 1, 2001. The measurement frequency of once per month and the sample type of grab is also retained from the current LPDES permit.

Site-Specific Consideration(s)

In accordance with LAC 33:IX1109.D.1., the Department of Environmental Quality has granted Air Liquide Large Industries U.S. LP, Plaquemine Facility three years to come into compliance with current water quality standards for the parameter total dissolved solids (TDS).

The following **Interim Schedule** starts on the effective date of the permit and expires approximately three years from the effective date:

PARAMETER	MONTHLY AVERAGE	DAILY MAXIMUM	FREQUENCY	SAMPLE TYPE
Total Dissolved Solids	Report mg/L	Report mg/L	1/quarter	Grab

The following **Final Schedule** starts three years after the effective date of the permit and expires upon expiration of the permit:

PARAMETER	MONTHLY AVERAGE	DAILY MAXIMUM	FREQUENCY	SAMPLE TYPE
Total Dissolved Solids	873.095 mg/L	2072.767 mg/L	1/quarter	Grab

Internal Outfall 101 - the discharge of process and non-process area stormwater and previously monitored effluent from Internal Outfall 101 consisting of cooling tower blowdown and treated wastewaters consisting of condensate, floor drains, washdown water, external truck wash water, and previously monitored effluent from Internal Outfall 301 consisting of sanitary wastewaters

Parameter	Monthly Average	Daily Maximum	Frequency	Sample type	Regulatory Basis
Flow (MGD)	Report	Report	1/month	Measure	LAC 33:IX.2707.I.1.b
тос		50 mg/L	1/month	Grab	BPJ; current LPDES permit
Oil & Grease	8.9 lbs/day	17.8 lbs/day	1/month	Grab	BPJ; current LPDES permit; 40 CFR 415.492
Oil & Grease		15 mg/L	1/month	Grab	BPJ; current LPDES permit
Additives*	Report	Report	1/month	Inventory	BPJ; current LPDES permit

* A list of the type and quantity of additives used in the cooling towers shall be submitted as an attachment to the Discharge Monitoring Report Quarterly. Material Safety Data Sheets for each additive used shall be submitted once to this Office and the Capital Regional Office at the time of initial use of the additive.

Treatment: treatment of condensate, floor drains, washdown water, and external truck wash water consists of an oil/water separator. Cooling tower blowdown is not treated.

Flow

The reporting monthly average and daily maximum flow is retained from the current LPDES permit and is based on LAC 33:IX.2707.I.1.b. The measurement frequency of once per month, when discharging, and the sample type of estimate is also retained from the current permit.

Total Organic Carbon (TOC)

A daily maximum permit limitation for total organic carbon at 50 mg/L is retained from the current LPDES permit. The measurement frequency of once per month, when discharging, and the sample type of grab is also retained from the current permit.

Oil and Grease

A daily maximum permit limitation in concentration for oil and grease at 15 mg/L is retained from the current LPDES permit. Since this LPDES permit was issued, LDEQ has issued an LPDES General Permit, LAG480000, that covers discharges from light commercial facilities. This general permit includes the authorization to discharge exterior vehicle wash water and washdown wastewater. The technology used to establish limitations in that general permit can be employed to establish technology limitations in this draft LPDES permit. Therefore, the transfer of limitations established in the LAG480000 is appropriate. The daily maximum permit limitation for oil and grease at 15 mg/L is also established in LAG480000 for the discharge of exterior vehicle wash water and washdown water. The measurement frequency of once per month, when discharging, and the sample type of grab is retained from the current permit.

Monthly average and daily maximum limitations for the quantity of oil and grease discharged are based on 40 CFR 415.492, the Oxygen and Nitrogen Production Subcategory of the Inorganic Chemicals Manufacturing Point Source Category. The current LPDES permit limits are based on a previous production of 2,250 tons (4.5 million pounds) per day of oxygen and 9,000 tons (18 million pounds) per day of nitrogen; previous total production of 22.5 million pounds. Currently, the amount of oxygen produced is 2.8 million pounds per day of oxygen and 6.1 million pounds per day of nitrogen. Total production is 8.9 million pounds per day. The guidelines require multiplication of a factor by pounds per 1000 pounds of product. Due to this decrease in production, the technology based limitations in accordance with 40 CFR 415.492 are as follows:

Monthly Average:

8,900 pounds per 1000 pounds \times 0.0010 = 8.9 pounds per day of Oil and Grease

Daily Maximum:

8,900 pounds per 1000 pounds $\times 0.0020 = 17.8$ pounds per day of Oil and Grease

The measurement frequency of once per month, when discharging, and the sample type of grab is retained from the current permit.

Additives

A reporting requirement for both monthly average and daily maximum amount of additives is retained from the current LPDES permit. The measurement frequency of once per month and sample type of inventory is also retained. A list of the type and quantity of additives used in the cooling towers shall be submitted as an attachment to the Discharge Monitoring Report Quarterly. Material Safety Data Sheets for each additive used shall be submitted once to this Office and the Capital Regional Office at the time of initial use of the additive.

Site-Specific Consideration(s)

NONE

Internal Outfall 301 - the discharge of treated sanitary wastewater.

Parameter	Monthly Average	Weekly Average	Frequency	Sample type	Regulatory Basis
Flow (MGD)	Report	Report	1/6 months	Estimate	LAC 33:IX.2707.I.1.b
BOD₅		45 mg/L	1/6 months	Grab	BPJ; sanitary general class I; current LPDES permit
TSS		45 mg/L	1/6 months	Grab	BPJ; sanitary general class I; current LPDES permit
Fecal Coliform colonies/100 ml		400	1/6 months	Grab	BPJ; sanitary general class I; current LPDES permit

Treatment: treatment of sanitary wastewater consists of an activated sludge package treatment unit.

Flow

The reporting monthly average and weekly average flow is retained from the current LPDES permit and is based on LAC 33:IX.2707.I.1.b. The measurement frequency of once per six months and the sample type of estimate is also retained from the current permit. This frequency and sample type is in accordance with the LPDES Sanitary Class I General Permit.

Biological Oxygen Demand (BOD₅)

The current permit established a weekly average permit limitation for BOD_5 at 45 mg/L. This limitation is retained. The limitation is based on LAC 33:IX.711.C and D and by best professional judgement utilizing the sanitary general permits issued by this Office for the discharge of sanitary wastewater. The measurement frequency of once per six months and the sample type of grab is also retained from the current permit.

Total Suspended Solids (TSS)

The current permit established a weekly average permit limitation for TSS at 45 mg/L. This limitation is retained. The limitation is based on LAC 33:IX.711.C and D and by best professional judgement utilizing the sanitary general permits issued by this Office for the discharge of sanitary wastewater. The measurement frequency of once per six months and the sample type of grab is also retained from the current permit.

Fecal Coliform

The current permit established a weekly average permit limitation for fecal coliform at 400 colonies per 100 ml. This limitation is retained. The limitation is based on LAC 33:IX.711.C and D and by best professional judgement utilizing the sanitary general permits issued by this Office for the discharge of sanitary wastewater. The measurement frequency of once per six months and the sample type of grab is also retained from the current permit.

Site-Specific Consideration(s)

NONE

C. WATER QUALITY-BASED EFFLUENT LIMITATIONS

In accordance with LAC 33:IX.2707.D.1/40 CFR § 122.44(d)(1), the existing (or potential) discharge (s) was evaluated in accordance with the <u>Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards</u>, LDEQ, September 27, 2001, to determine whether pollutants would be discharged "at a level which will cause, have the reasonable potential to cause, or contribute to an excursion above any state water quality standard." Calculations, results, and documentation are given in Appendix A.

The following pollutants received water quality based effluent limits:

Total Dissolved Solids

Minimum quantification levels (MQL's) for state water quality numerical standards-based effluent limitations are set at the values listed in the <u>Permitting Guidance Document for Implementing</u>

<u>Louisiana Surface Water Quality Standards</u>, LDEQ, September 27, 2001. They are also listed in Part II of the permit.

TMDL Waterbodies

The discharges from outfalls 001, 101, and 301 including cooling tower blowdown, process and non-process area stormwater, and treated wastewater consisting of condensate, floor drains, washdown water, external truck wash water, and sanitary wastewater are to Bayou LaButte, Segment No. 120201. Bayou LaButte is listed on the 303(d) report as being impaired with organic enrichment/low DO, pathogen indicators, nitrate/nitrites, sulfates, and phosphorus. A TMDL is scheduled to be completed by 2007-2008.

Organic Enrichment/Low DO

To address the potential for further impairment of organic enrichment/low DO, the biological oxygen demand limitations in the permit shall remain equivalent to those established in the current LPDES permit to ensure no further impairment to this stream.

Pathogen Indicators

To address the potential for further impairment of pathogen indicators, the fecal coliform limitations in the permit shall remain equivalent to those established in the current LPDES permit to ensure no further impairment to this stream.

Nitrate/Nitrite, Sulfates, and Phosphorus

The discharges from this facility are not reasonably expected to cause further nitrate/nitrite, sulfates, or phosphorus impairments, therefore, no additional requirements were added to this permit.

A reopener clause will be established in the permit to include more stringent limits based on final loading allocations upon completion of an approved TMDL.

8. COMPLIANCE HISTORY/COMMENTS

A compliance history/dmr review was done to cover the period of January 2002 through December 2005. There are no open enforcement actions on file for this facility.

A. Inspections

August 27, 2002 - a facility inspection indicated that all areas were satisfactory.

December 16, 2004 - a facility inspection found a few TSS exceedances in January 2004. It was also noted that Oil & Grease loadings were not included on DMRs. The company took steps to correct DMRs for the missing Oil & Grease loading. On March 10, 2005, LDEQ issued Air Liquide a Deficiency Clear Letter stating that the areas of concern had been adequately addressed.

B. DMR Review/Excursions

<u>Date</u>	<u>Parameter</u>	<u>Outfall</u>	Reported Value	Permit Limits
01/01/02	Fecal Coliform	301	480 col/100 ml wkły avg	400 col/100 ml wkly avg
10/01/02	Oil & Grease	101	54.223 lbs/day dly max	45 lbs/day dly max
01/01/04	TSS	301	66 mg/L wkly avg	45 mg/L wkly avg
05/01/05	TOC	101	No Sample taken	· · · · · · ·
05/01/05	Oil&Grease	101	No Sample taken	

9. ENDANGERED SPECIES

The receiving waterbody, Subsegment 120201 of the Terrebonne Basin is not listed in Section II.2 of the Implementation Strategy as requiring consultation with the U.S. Fish and Wildlife Service (FWS). This strategy was submitted with a letter dated October 21, 2005 from Watson (FWS) to Gautreaux (LDEQ). Therefore, in accordance with the Memorandum of Understanding between the LDEQ and the FWS, no further informal (Section 7, Endangered Species Act) consultation is required. It was determined that the issuance of the LPDES permit is not likely to have an adverse effect on any endangered or candidate species or the critical habitat. The effluent limitations established in the permit ensure protection of aquatic life and maintenance of the receiving water as aquatic habitat.

10. HISTORIC SITES

The discharge is from an existing facility location, which does not include an expansion on undisturbed soils. Therefore, there should be no potential effect to sites or properties on or eligible for listing on the National Register of Historic Places, and in accordance with the "Memorandum of Understanding for the Protection of Historic Properties in Louisiana Regarding LPDES Permits" no consultation with the Louisiana State Historic Preservation Officer is required.

11. TENTATIVE DETERMINATION

On the basis of preliminary staff review, the Department of Environmental Quality has made a tentative determination to a permit for the discharge described in the application.

12. PUBLIC NOTICES

Upon publication of the public notice, a public comment period shall begin on the date of publication and last for at least 30 days thereafter. During this period, any interested persons may submit written comments on the draft permit and may request a public hearing to clarify issues involved in the permit decision at this Office's address on the first page of the statement of basis. A request for a public hearing shall be in writing and shall state the nature of the issues proposed to be raised in the hearing.

Public notice published in:

Local newspaper of general circulation

Office of Environmental Services Public Notice Mailing List

13. STORM WATER POLLUTION PREVENTION PLAN (SWP3) REQUIREMENT

As per LAC 33:IX.2341.B.14.k, stormwater discharges from facilities classified as SIC Code 2813 are considered to be associated with industrial activities. Therefore, an SWP3 is included in the permit.

The SWP3 shall be prepared, implemented, and maintained within six (6) months of the effective date of the final permit. The plan should identify potential sources of storm water pollution and ensure the implementation of practices to prevent and reduce pollutants in storm water discharges associated with industrial activity at the facility (see narrative requirements for the AI).

APPENDIX A

Date: 01/30

Appendix A-1

Developer: Bruce Fielding Time: 02:59 PM

Software: Lotus 4.0

LA0050695, AI27823

Page 1

Revision date: 02/14/05

Water Quality Screen for Air Liquide America Corp / Plaquemine Facility

Input variables:	water Quality	Screen for Air Liquide Americ	ca Corp / Plaquemine Facility	
Receiving Water Characte	eristics.	Dilution:	Toxicity Dilution Serie	
Necesting water emerace.		ZID Fs = 0.1		
Receiving Water Name=	Bayou LaButte	210 FB = 0.1	Biomonitoring dilution: Dilution Series Factor:	
Critical flow (Or) cfs=	-	M# D-	Difficion Series Paccor:	0.75
	0.1	MZ Fs = 1		
Harm, mean/avg tidal cf:		Critical Or (MGD) = 0.06463	Dilusian V	Percent Effluent
Drinking Water=1 HHNPCR:	= 2	Harm, Mean (MGD) = 2.074623	Dilution No. 1	90.956%
Marine, 1=y, 0≈n Rec. Water Hardness≃	3.40	ZID Dilution = 0.990155	Dilution No. 2	68.2171%
	348	MZ Dilution = 0.909562	Dilution No. 3	51.1628%
Rec. Water TSS=	12.2	HHnc Dilution= 0.909562	Dilution No. 4	38.3721*
Fisch/Specific=1,Stream= Diffuser Ratio=	•0	HHc Dilution= 0.238565	Dilution No. 5	28.7791%
Dilluser Ratios		ZID Upstream = 0.009943	Province Confidence P	
Pffloor Characteristics	_	MZ Upstream # 0.099431	Partition Coefficients; D	19501ved>Total
Effluent Characteristics		MZhhnc Upstream= 0.099431		
Permittee=		rica Corp / Plaquemine Facilit		FW
Permit Number*	LA0050695, AI27		Total Arsenic 1.943	
Facility flow (Qef),MGD=	0.65	MZhhc Upstream= 3.191728	Total Cadmium 3.88	
		ZID Hardness=	Chromium III 5.00	
Outfall Number =	001	MZ Hardness=	Chromium VI	1
Eff. data, 2=lbs/day		ZID TSS=	Total Copper 2.992	
MQL, 2=1bs/day Effluent Hardness=	1	MZ TSS=	Total Lead 5.617	
	N/A	Multipliers:	Total Mercury 3.043	
Effluent TSS=	N/A	WLAa> LTAa 0.32	Total Nickel 2.436	
WQBL ind. 0=y, 1=n	•v 0	WLAC> LTAC 0.53	Total Zinc 3.64	739
Acute/Chr. ratio 0=n, 1=	_	LTA a,c>WQBL avg 1.31		
Aquatic, acute only1=y,0=	∍n	LTA a,c>WQBL max 3.11	Aquatic Life, Dissolved	
Page Numbering/Inheline		LTA h> WQBL max 2.38	Metal Criteria, ug/L	TOTAL COMPANIA
Page Numbering/Labeling	Nam 3/ N N	WQBL-limit/report 2.13		UTE CHRONIC
Appendix	Appendix A-1	WLA Fraction 1		9.8 150
Page Numbers 1=y, 0=n	1	WQBL Fraction 1		582 2.587341
Input Page # 1=y, 0=n	1	ge		767 494.2942
Finahay/Giba Ganaifia ia	amanta a	Conversions:	Chromium VI 15.	_
Fischer/Site Specific in	_	ug/L>lbs/day Qef0.005421		366 35.65484
Pipe=1, Canal=2, Specific=	· J	ug/L>lbs/day Qeo 0		253 9.482037
Pipe width, feet		ug/L>lbs/day Qr 0.000834	•	734 0.012
ZID plume dist., feet		lbs/day>ug/L Qeo184.4678		969 451.4474
MZ plume dist., feet		lbs/day>ug/L Qef184.4678	Zinc 329.2	198 300.6276
HHnc plume dist., feet		diss>tot 1=y0≠n 1	Dita Compilia Malki Ni	
HMc plume dist., feet		Cu diss->totl=y0=n 1	Site Specific Multiplie:	
Fi	Total Comm	cfs>MGD 0.6463	cv =	•••
Fischer/site specific di		Pegajuing Street	N =	
F/specific ZID Dilution		Receiving Stream:	WLAG> LTAG	•••
F/specific MZ Dilution =		Default Hardness= 25	WLAC> LTAC	
F/specific HHnc Dilution		Default TSS= 10	LTA a,c>WQBL avg	•••
F/specific HHc Dilution=		99 Crit., l=y, 0=n 1	LTA a,c>WQBL max	**-

LTA h --> WQBL max

Appendix A-1
Air Liquide America Corp / Plaquemine Facility
LA0050695, AI27823

(*1)	(*2)	(*3)	(*4)	(*5)	(*6					(*11)
Toxic	Cul	Effluent 1	Effluent	WOIN	Effluent	95th 🕻	Nu	merical C	riteria	нн
Parameters	Instream	/Tech	/Tech	3	1-No 95%	estimat	e Acut	e Chroni	C HHNDW	Carcinogen
	Conc.	(Avg)	(Max)	(0=95 %	Non-Tech	FW	FW		Indicator
	ug/L	ug/L	ug/L	ug/L		ug/L	ug/	L ug/	L ug/L	"C"
NONCONVENTIONAL										
Total Phenols (4AAP)		10		5	0	21.3	700	350	50	
3-Chlorophenol				10						
4-Chlorophenol				10			383	192		
2,3-Dichlorophenol				10						
2,5-Dichlorophenol				10						
2,6-Dichlorophenol				10						
3,4-Dichlorophenol				10						
2,4-Dichlorophenocy-										
acetic acid (2,4-D)										
2-(2,4,5-Trichlorophen-										
oxy) propionic acid										
(2,4,5-TP, Silvex)										
METALS AND CYANIDE										
Total Arsenic		33		10	0	70.29	660.2659	291.4652		
Total Cadmium				1				10.06364		
Chromium III		50		10	0	106.5	7623.39	2472.949		
Chromium VI				10			15,712	10.582		
Total Copper				10			178.5678	106.7116		
Total Lead				5			1366.94	53.26767		
Total Mercury				0.2			5.276882	0.036518		
Total Nickel				40			9904.634	1099,989		
Total Zinc		30		20	0	63.9	1200.793	1096.506		
Total Cyanide				20			45.9	5.2	12844	
DIOXIN										
2,3,7,8 TCDD; dioxin			1.0	E-005					7.2E-007	С
VOLATILE COMPOUNDS										
Benzene				10			2249	1125	12.5	С
Bromoform				10			2930	1465	34.7	С
Bromodichloromethane				10					3.3	С
Carbon Tetrachloride				10			2730	1365	1.2	С
Chloroform				10			2890	1445	70	С
Dibromochloromethane				10					5.08	С
1,2-Dichloroethane				10			11800	5900	6.8	C
1,1-Dichloroethylene				10			1160	580	0.58	С
1,3-Dichloropropylene				10			606	303	162.79	
Ethylbenzene				10			3200	1600	8100	
Methyl Chloride				50			55000	27500		
Methylene Chloride				20			19300	9650	87	С
1,1,2,2-Tetrachloro-										
ethane				10			932	466	1.8	С

,

Appendix A-1 Air Liquide America Corp / Plaquemine Facility LA0050695, AI27823

(*1) Toxic Parameters	(*12) WLAa Acute	WLA	c WLA		a LTA	c LTA	h Limiting		L WQB	L WQBI	WOBL	(*23) Need WQBL?
	ug/L	ug/1	L ug/1	L ug/1	L ug/:	L ug/	L ug/I	. ug/1	L ug/1		lbs/day	
NONCONVENTIONAL												
Total Phenols (4AAP)	706.9602	384.8008	54.97154	226.2272	203.9444	54.97154	54.97154	54.97154	130.8323	0.298001	0.709242	no
3-Chlorophenol								• • •				no
4-Chlorophenol	386.8082	211.0907		123.7786	111.8781		111.8781	146.5603	347.9408	0.794503	1.886187	no
2,3-Dichlorophenol												no
2,5-Dichlorophenol											•••	no
2,6-Dichlorophenol								• • •		•••		, no
3,4-Dichlorophenol												no
2,4-Dichlorophenocy-												
acetic acid (2,4-D)												no
2-(2,4,5-Trichlorophen-												
oxy) propionic acid												
(2,4,5-TP, Silvex)			•					•••				no
METALS AND CYANIDE												
Total Arsenic	666.8309	320.4458		213.3859	169.8363					1.206094		по
Total Cadmium	481.8315	11.06428		154.1861	5.864069		5.864069	7.68193	18.23725	0.041644	0.098864	no
Chromium III	7699.19	2718.836		2463,741	1440.983		1440.983	1887.688	4481.458	10.23316	24.29398	no
Chromium VI	15.86823	11.63418		5.077832	6.166113		5.077832	6.65196	15.79206	0.03606	0.085609	no
Total Copper	180.3433	117.322		57.70985	62.18068	•	57.70985	75.5999	179.4776	0.409827	0.972948	no
Total Lead	1380.531	58.56412		441.77	31.03898	***	31.03898	40.66107	96.53123	0.220424	0.523296	no
Total Mercury	5.329351	0.040149		1.705392	0.021279		0.021279	0.027876	0.066178	0.000151	0.000359	ПĢ
Total Nickel	10003.12	1209.362		3200.997	640.9618		640.9618	839.6599	1993.391	4.551797	10.80617	no
Total Zinc	1212.733	1205.533		388.0744	638.9323		388.0744	508.3775	1206.911	2.755914	6.542667	no
Total Cyanide	46.35639	5.71704	14121.09	14.83404	3.030031	14121.09	3.030031	3.969341	9.423397	0.021518	0.051084	no
DIOXIN												
2,3,7,8 TCDD; dioxin			0.000003			0.000003	0.000003	0.000003	0.000007	1.6E-008	3.9E-008	no
VOLATILE COMPOUNDS												
Benzene	2271.362	1236.86	52.3966	726.8358	655.5356	52.3966	52.3966	52.3966	124.7039	0.284042	0.67602	no
Bromoform	2959,133	1610.666	145.453	946.9226	853.653	145.453	145.453	145.453	346.178	0.7885	1.876631	no
Bromodichloromethane			13.8327			13.8327	13.8327	13.8327	32.92183	0.074987	0.178469	по
Carbon Tetrachloride	2757.145	1500.723	5.030073	882.2863	795.3832	5.030073	5.030073	5.030073	11.97157	0.027268	0.064898	οn
Chloroform	2918.735	1500.677	293.4209	933.9954	841.9991	293.4209	293.4209	293.4209	698.3418	1.590635	3.785711	no
Dibromochloromethane			21.29398			21.29398	21.29398	21.29398	50.67966	0.115435	0.274734	no
1,2-Dichloroethane	11917.33	6486.642	28.50375	3813.545	3437.92	28.50375	28.50375	28.50375	67.83892	0.154519	0.367755	no
1,1-bichloroethylene	1171.534	637.6698	2.431202	374.8909	337.965	2.431202	2.431202	2.431202	5.786261	0.01318	0.031367	no
1,3-Dichloropropylene	612.0255	333.1275	178.9763	195.8482	176.5576	178.9763	176.5576	231.2904	549.0941	1.253825	2.976639	no
Ethylbenzene	3231.818	1759.089	8905.389	1034.182	932.3173	8905.389	932.3173	1221.336	2899.507	6.620861	15.71823	no
Methyl Chloride	\$5546.87			_	16024.2					113.796		no
Methylene Chloride	19491.9	10609.51	364.6803	6237.408	5623.039	364.6803	364.6803	364.6803	867.9391	1.976932	4.705098	no
1,1,2,2-Tetrachloro-												
ethane	941.2669	512,3347	7.54511	301.2054	271.5374	7.54511	7.54511	7.54511	17.95736	0.040902	0.097347	по

Page 4 Air Liquide America Corp / Plaquemine Facility LA0050695, A127823 (*8) **(*1)** (*2) (*3) (*4) (*5) (*6) (*9) (*10) (*11)

("1)	(-2)	1.21	1.31	1.21	1.0	, (, , ,	101	(2)	(10	(
Toxic	CuE	ffluent	Effluent	MQL	Effluent	95th %	Nume	rical Cr	iteria	нн
Parameters	Instream	/Tech	/Tech		1=No 95%	estimate	Acute	Chronic	ннири	Carcinogen
	Conc.	(Avg)	(Max)		0=95 %	Non-Tech	FW	FW		Indicator
	ug/L	ug/L	ug/L	ug/L		ug/L	ug/L	ug/L	ug/1	L #C#
VOLATILE COMPOUNDS (con	nt'd)									
Tetrachloroethylene				10			1290	645	2.5	C
Toluene				10			1270	635	46200	
1,1,1-Trichloroethane				10			5280	2640		
1,1,2-Trichloroethane				10			1800	900	6.9	С
Trichloroethylene				10			3900	1950	21	C
Vinyl Chloride				10					35.8	c
ACID COMPOUNDS										
2-Chlorophenol				. 10			258	129	126.4	
2,4-Dichlorophenol				10			202	101	232.6	
BASE NEUTRAL COMPOUNDS										
Benzidine				50			250	125	0.00017	C
Hexachlorobenzene				10					0.00025	С
Hexachlorabutadiene				10			5.1	1.02	0.11	С
PESTICIDES										
Aldrin				0.05			3		0.0004	c
Hexachlorocyclohexane										
(gamma BHC, Lindane)				0.05			5.3	0.21	0.2	С
Chlordane				0.2			2.4	0.0043	0.00019	C
4,4'-DDT				0.1			1.1	0.001	0.00019	C
4,4'-DDE				0.1			52.5	10.5	0.00019	С
4,4'-DDD				0.1			0.03	0.006	0.00027	С
Dieldrin				0.1			0.2374	0.0557	0.00005	C
Endosulfan				0.1			0.22	0.056	0.64	
Endrin				0.1			0.0864	0.0375	0.26	
Heptachlor				0.05			0.52	0.0038	0.00007	c
Toxaphene				5			0.73	0.0002	0.00024	C
Other Parameters:										
Fecal Col.(col/100ml)										
Chlorine							19	11		
Ammonia								4000		
Chlorides										
Sulfates										
TDS		904000	1239000		1			300000		

TDS 904000 1239000 300000

Appendix A-1 Air Liquide America Corp / Plaquemine Facility LAU050695, AI27823

(*1)	(*12)	(*13)	(*14)	(*15)	(*16)	(*17)	(*18)	(*19)	(*20)	(*21)	(*22)	(*23)
Toxic	WLAa	WLAC	. WLA	n LTAs	LTA	c LTA	n Limiting	WQBI	. WQBI	I WQBI	WOBL	Need
Parameters	Acute	Chronic	HHNDW	Acute	Chronic	c HHNDW	A,C,HH	Avç	y Max	. Avg	Max	WQBL?
								001	001	001	001	
	ug/L	ug/I	L ug/I	ug/I	_ ug/1	L ug/1	L ug/I	. ug/I	L ug/I	. lbs/day	lbs/day	
Tetrachloroethylene	1302.827	709.1328	10.47932	416.9045	375.8404	10.47932	10.47932	10.47932	24.94078	0.056808	0.135204	no
Toluene	1282.628	698.1385	50793.7	410.4409	370.0134	50793.7	370.0134	484.7176	1150.742	2.627654	6.238171	no
1,1,1-Trichloroethane	5332.499	2902.497		1706.4	1538.324		1538.324	2015.204	4784.186	10.92442	25.93507	no
1,1,2-Trichloroethane	1817.898	989.4877	28.92292	581.7272	524.4285	28.92292	28.92292	28.92292	68.83655	0.156791	0.373163	סת
Trichloroethylene	3938.778	2143.89	88.02628	1260.409	1136.262	88.02628	88.02628	88.02628	209.5026	0.47719	1.135713	no
Vinyl Chloride			150.0639			150.0639	150.0639	150.0639	357.152	0.813496	1.936121	no
ACID COMPOUNDS												
2-Chlorophenol	260.5653	141.8266	138.968	83.3809	75.16808	138.968	75.16808	98.47019	233.7727	0.533807	1.267282	no
2,4-Dichlorophenol	204.0085	111.0425	255.7276	65.28272	58.85253	255.7276	50.85253	77.09681	183.0314	0.417942	0.992213	no
BASE NEUTRAL COMPOUNDS												
Benzidine	252.4858	137.4288	0.000713	80.79545	72.83729	0.000713	0.000713	0.000713	0.001696	0.000004	0.000009	no
Hexachlorobenzene			0.001048			0.001048	0.001048	0.001048	0.002494	0.000006	0.000014	no
Hexachlorabutadiene	5.15071	1.121419	0.46109	1.648227	0.594352	0.46109	0.46109	0.46109	1.097394	0.0025	0.005949	no
PESTICIDES												
Aldrin	3.029829		0.001677	0.969545		0.001677	0.001677	0.001677	0.003991	0.000009	0.000022	no
Hexachlorocyclohexane												
(gamma BHC, Lindane)	5.352698	0.23088	0.838346	1.712863	0.122367	0.838346	0.122367	0.1603	0.38056	0.000869	0.002063	no
Chlordane	2.423863	0.004728	0.000796	0.775636	0.002506	0.000796	0.000796	0.000796	0.001895	0.000004	0.00001	no
4,4'-DDT	1.110937	0.001099	0.000796	0.3555	0.000583	0.000796	0.000583	0.000763	0.001812	0.000004	0.00001	no
4,4'-DDE	53.02201										0.00001	no
4,4'-DDD	0.030298											no
Dieldrin	0.23976	0.061238	0.00021				0.00021					no
Endosulfan	0.222187						0.032631					no
Endrin	0.087259	0.041229	0.285852	0.027923	0.021851	0.285852	0.021851	0.028625	0.067957	0.000155	0.000368	no
Heptachlor	0.52517	0.004178	0.000293	0.168055	0.002214	0.000293	0.000293	0.000293	0.000698	0.000002	0.000004	no
											0.000000	
Toxaphene	0.737258	0.00022	0.001006	0.235923	0.000117	0.001006	0.000117	0.000153	0.000362	8.3E-00/	0.000002	no
Other Parameters:											•	
Fecal Col.(col/100ml)												no
Chlorine	19.18892	12.09374		6.140454	6.409681		6.140454	8.043995	19.09681	0.043606	0.103524	no
Ammonia		4397.723			2330.793		2330.793					no
Chlorides	• • •							***				no
Sulfates									***			no
TDS		1257518			666484.7		666484.7	873095	2072767	4733.048	11236.47	yes
	_									-		-
				•								по
												nο

APPENDIX A-2 LA0050695, AI No. 27823

Documentation and Explanation of Water Quality Screen and Associated Lotus Spreadsheet

Each reference column is marked by a set of parentheses enclosing a number and asterisk, for example (*1) or (*19). These columns represent inputs, existing data sets, calculation points, and results for determining Water Quality Based Limits for an effluent of concern. The following represents a summary of information used in calculating the water quality screen:

Receiving Water Characteristics:

Receiving Water: Bayou LaButte Critical Flow, Qrc (cfs): 0.1

Harmonic Mean Flow, Qrh (cfs): 3.21

Segment No.: 120201

Receiving Stream Hardness (mg/L): 348.00

Receiving Stream TSS (mg/L): 12.20

MZ Stream Factor, Fs: 1 Plume distance, Pf: N/A

Effluent Characteristics:

Company: Air Liquide Large Industries U.S. LP

Facility flow, Qe (MGD): 0.65

Effluent Hardness: N/A

Effluent TSS: N/A

Pipe/canal width, Pw: N/A Permit Number: LA0050695

Variable Definition:

Qrc, critical flow of receiving stream, cfs

Qrh, harmonic mean flow of the receiving stream, cfs

Pf = Allowable plume distance in feet, specified in LAC 33.IX.1115.D

Pw = Pipe width or canal width in feet

Qe, total facility flow , MGD

Fs, stream factor from LAC.IX.33.11 (1 for harmonic mean flow)

Cu, ambient concentration, ug/L

Cr, numerical criteria from LAC.IX.1113, Table 1

WLA, wasteload allocation

LTA, long term average calculations

WQBL, effluent water quality based limit

ZID, Zone of Initial Dilution in % effluent

MZ, Mixing Zone in % effluent

Formulas used in aquatic life water quality screen (dilution type WLA):

Streams:

Dilution Factor = $\frac{Qe}{(Qrc \times 0.6463 \times Fs + Qe)}$

WLA a,c,h =
$$\frac{Cr}{Dilution Factor}$$
 - $\frac{(Fs \times Orc \times 0.6463 \times Cu)}{Qe}$

Static water bodies (in the absence of a site specific dilution):

Discharge from a pipe:

Discharge from a canal:

Critical
Dilution = (2.8) Pw $\Pi^{1/2}$

Critical
Dilution = $(2.38) (Pw^{1/2})$ $(Pf)^{1/2}$

WLA = $\frac{(Cr-Cu) Pf}{(2.8) Pw n^{1/2}}$

WLA = $\frac{(Cr-Cu) Pf^{1/2}}{2.38 Pw^{1/2}}$

Formulas used in human health water quality screen, human health non-carcinogens (dilution type WLA):

Streams:

Dilution Factor =
$$\frac{Qe}{(Qrc \times 0.6463 + Qe)}$$

WLA a,c,h =
$$\frac{Cr}{Dilution \ Factor}$$
 - $\frac{(Orc \times 0.6463 \times Cu)}{Qe}$

Formulas used in human health water quality screen, human health carcinogens (dilution type WLA):

WLA a,c,h =
$$\frac{Cr}{Dilution Factor}$$
 - $\frac{(Orh \times 0.6463 \times Cu)}{Qe}$

Static water bodies in the absence of a site specific dilution (human health carcinogens and human health non-carcinogens):

Discharge from a pipe:

Discharge from a canal:

Critical
Dilution = (2.8) Pw $n^{1/2}$ Pf

Critical
Dilution = $\frac{(2.38)(Pw^{1/2})}{(Pf)^{1/2}}$

WLA =
$$\frac{(Cr-Cu) pf^*}{(2.8) p_w n^{1/2}}$$
 WLA = $\frac{(Cr-Cu) pf^{1/2}*}{2.38 pw^{1/2}}$

* Pf is set equal to the mixing zone distance specified in LAC 33:IX.1115 for the static water body type, i.e., lake, estuary, Gulf of Mexico, etc.

If a site specific dilution is used, WLA are calculated by subtracting Cu from Cr and dividing by the site specific dilution for human health and aquatic life criteria.

WLA = (Cr-Cu) site specific dilution

Longterm Average Calculations:

LTAa = WLAa X 0.32

LTAc = WLAc X 0.53

LTAh = WLAh

WQBL Calculations:

Select most limiting LTA to calculate daily max and monthly avg WQBL

If aquatic life LTA is more limiting:
Daily Maximum = Min(LTAa, LTAc) X 3.11
Monthly Average = Min(LTAc, LTAc) X 1.31

If human health LTA is more limiting:

Daily Maximum = LTAh X 2.38

Monthly Average = LTAh

Mass Balance Formulas:

mass (lbs/day): $(ug/L) \times 1/1000 \times (flow, MGD) \times 8.34 = lbs/day$

concentration(ug/L): $\frac{lbs/day}{(flow, MGD) X 8.34 X 1/1000} = ug/I$

The following is an explanation of the references in the spreadsheet.

- (*1) Parameter being screened.
- (*2) Instream concentration for the parameter being screened in ug/L. In the absence of accurate supporting data, the instream concentration is assumed to be zero (0).
- (*3) Monthly average effluent or technology value in concentration units of ug/L or mass units of lbs/day. Units determined on a case-by-case basis as appropriate to the particular situation.
- (*4) Daily maximum technology value in concentration units of ug/L or mass units of lbs/day. Units determined on a case-by-case basis as appropriate to the particular situation.
- (*5) Minimum analytical Quantification Levels (MQL's). Established in a letter dated January 27, 1994 from Wren Stenger of EPA Region 6 to Kilren Vidrine of LDEQ and from the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards". The applicant must test for the parameter at a level at least as sensitive as the specified MQL. If this is not done, the MQL becomes the application value for screening purposes if the pollutant is suspected to be present

on-site and/or in the waste stream. Units are in ug/l or lbs/day depending on the units of the effluent data.

- (*6) States whether effluent data is based on 95th percentile estimation. A
 "1" indicates that a 95th percentile approximation is being used, a "0"
 indicates that no 95th percentile approximation is being used.
- (*7) 95th percentile approximation multiplier (2.13). The constant, 2.13, was established in memorandum of understanding dated October 8, 1991 from Jack Ferguson of Region 6 to Jesse Chang of LDEQ and included in the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards". This value is screened against effluent Water Quality Based Limits established in columns (*18) (*21). Units are in ug/l or lbs/day depending on the units of the measured effluent data.
- (*8) LAC 33.IX.1113.C.6, Table 1, Numerical Criteria for Specific Toxic Substances, freshwater (FW) or marine water (MW) (whichever is applicable) aquatic life protection, acute criteria. Units are specified. Some metals are hardness dependent. The hardness of the receiving stream shall generally be used, however a flow weighted hardness may be determined in site-specific situations. Dissolved metals are converted to Total metals using partition coefficients in accordance with the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards". Similar to hardness, the TSS of the receiving stream shall generally be used, however, a flow weighted TSS may be determined in site-specific situations.
 Hardness Dependent Criteria:

Metal Formula

 Cadmium
 e(1.1280[ln(hardness)] - 1.6774)

 Chromium III
 e(0.8190[ln(hardness)] + 3.6880)

 Copper
 e(0.9422[ln(hardness)] - 1.3884)

 Lead
 e(1.2730[ln(hardness)] - 1.4600)

 Nickel
 e(0.8460[ln(hardness)] + 3.3612)

 Zinc
 e(0.8473[ln(hardness)] + 0.8604)

Dissolved to Total Metal Multipliers for Freshwater Streams (TSS dependent):

Metal Multiplier

Arsenic $1 + 0.48 \times TSS^{-0.73} \times TSS$ $1 + 4.00 \times TSS^{-1.13} \times TSS$ Cadmium 1 + 3.36 X TSS^{-0.93} X TSS Chromium III $1 + 1.04 \times TSS^{-0.74} \times TSS$ Copper $1 + 2.80 \text{ X TSS}^{-0.80} \text{ X TSS}$ Lead $1 + 2.90 \text{ X TSS}^{-1.14} \text{ X TSS}$ Mercury $1 + 0.49 \times TSS^{-0.57} \times TSS$ Nickel $1 + 1.25 \times TSS^{-0.70} \times TSS$ Zinc

Dissolved to Total Metal Multipliers for Marine Environments (TSS dependent):

Metal Multiplier

```
Copper 1 + (10^{4.86} \text{ X TSS}^{-0.72} \text{ X TSS}) \text{ X } 10^{-6}

Lead 1 + (10^{6.06} \text{ X TSS}^{-0.85} \text{ X TSS}) \text{ X } 10^{-6}

Zinc 1 + (10^{5.36} \text{ X TSS}^{-0.52} \text{ X TSS}) \text{ X } 10^{-6}
```

If a metal does not have multiplier listed above, then the dissolved to total metal multiplier shall be 1.

(*9) LAC 33.IX.1113.C.6, Table 1, Numerical Criteria for Specific Toxic Substances, freshwater (FW) or marine water (MW) (whichever is applicable) aquatic life protection, chronic criteria. Units are specified. Some metals are hardness dependent. The hardness of the receiving stream shall generally be used, however a flow weighted hardness may be determined in site-specific situations. Dissolved metals are converted to Total metals using partition coefficients in accordance with the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards". Similar to hardness, the TSS of the receiving stream shall generally be used, however, a flow weighted TSS may be determined in site-specific situations.

Hardness dependent criteria:

Metal Formula

Cadmium	e ^{(0.7852[ln(hardness)]} - 3.4900)
Chromium III	e {0.8473(ln(hardness)) + 0.7614)
Copper	e (0.8545[ln(hardness)] - 1.3860)
Lead	e ^{(1.2730[ln(hardness)] - 4.7050)}
Nickel	e (0.8460[ln(hardness)] + 1.1645)
Zinc	e ^{(0.8473[ln(hardness)] + 0.7614)}

Dissolved to total metal multiplier formulas are the same as (*8), acute numerical criteria for aquatic life protection.

- (*10) LAC 33.IX.1113.C.6, Table 1, Numerical Criteria for Specific Toxic Substances, human health protection, drinking water supply (HHDW), nondrinking water supply criteria (HHNDW), or human health non-primarry contact recreation (HHNPCR) (whichever is applicable). A DEQ and EPA approved Use Attainability Analysis is required before HHNPCR is used, e.g., Monte Sano Bayou. Units are specified.
- (*11) C if screened and carcinogenic. If a parameter is being screened and is carcinogenic a "C" will appear in this column.
- (*12) Wasteload Allocation for acute aquatic criteria (WLAa). Dilution type WLAa is calculated in accordance with the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards". Negative values indicate that the receiving water is not meeting the acute aquatic numerical criteria for that parameter. Units are in ug/L. Dilution WLAa formulas for streams:

WLAa = (Cr/Dilution Factor) - (Fs x Orc x 0.6463 x Cu)

Qe

Dilution WLAa formulas for static water bodies:

WLAa = (Cr-Cu)/Dilution Factor)

Cr represents aquatic acute numerical criteria from column (*8). If Cu data is unavailable or inadequate, assume Cu=0.

If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then a blank shall appear in this column.

(*13) Wasteload Allocation for chronic aquatic criteria (WLAc). Dilution type WLAc is calculated in accordance with the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards". Negative values indicate that the receiving water is not meeting the chronic aquatic numerical criteria for that parameter. Units are in ug/L. Dilution WLAc formula:

WLAc = (Cr/Dilution Factor) - (Fs x Orc x 0.6463 x Cu)

Qe

Dilution WLAc formulas for static water bodies:

WLAc = (Cr-Cu)/Dilution Factor)

Cr represents aquatic chronic numerical criteria from column (*9).

If Cu data is unavailable or inadequate, assume Cu=0.

If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then a blank shall appear in this column.

(*14) Wasteload Allocation for human health criteria (WLAh). Dilution type WLAh is calculated in accordance with the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards". Negative values indicate that the receiving water is not meeting the human health numerical criteria for that parameter. Units are in ug/L. Dilution WLAh formula:

WLAh = (Cr/Dilution Factor) - (Fs x Orc, Orh x 0.6463 x Cu)

Qe

Dilution WLAh formulas for static water bodies:

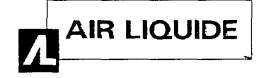
WLAh = (Cr-Cu)/Dilution Factor)

Cr represents human health numerical criteria from column (*10).

If Cu data is unavailable or inadequate, assume Cu=0.

If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then a blank shall appear in this column.

- (*15) Long Term Average for aquatic numerical criteria (LTAa). WLAa numbers are multiplied by a multiplier specified in the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards" which is 0.32. WLAa X 0.32 = LTAa.
 - If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then a blank shall appear in this column.
- (*16) Long Term Average for chronic numerical criteria (LTAc). WLAc numbers are multiplied by a multiplier specified in the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards" which is 0.53. WLAC X 0.53 = LTAc.


If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then a blank shall appear in this column.

(*17) Long Term Average for human health numerical criteria (LTAh). WLAh numbers are multiplied by a multiplier specified in the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards" which is 1. WLAC X 1 = LTAh.

If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then a blank shall appear in this column.

- (*18) Limiting Acute, Chronic or Human Health LTA's. The most limiting LTA is placed in this column. Units are consistent with the WLA calculation. If standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then the type of limit, Aquatic or Human Health (HH), is indicated.
- (*19) End of pipe Water Quality Based Limit (WQBL) monthly average in terms of concentration, ug/L. If aquatic life criteria was the most limiting LTA then the limiting LTA is multiplied by 1.31 to determine the average WQBL (LTA_{limiting aquatic} X 1.31 = WQBL_{monthly average}). If human health criteria was the most limiting criteria then LTAh = WQBL_{monthly average}. If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then either the human health criteria or the chronic aquatic life criteria shall appear in this column depending on which is more limiting.
- (*20) End of pipe Water Quality Based Limit (WQBL) daily maxium in terms of concentration, ug/L. If aquatic life criteria was the most limiting LTA then the limiting LTA is multiplied by 3.11 to determine the daily maximum WQBL (LTA_{limiting aquatic} X 3.11 = WQBL_{daily max}). If human health criteria was the most limiting criteria then LTAh is multiplied by 2.38 to determine the daily maximum WQBL (LTA_{limiting aquatic} X 2.38 = WQBL_{daily max}). If water quality standards are being applied at end-of-pipe, such as in the case of certain TMDL's, then either the human health criteria or the acute aquatic life criteria shall appear in this column depending on which is more limiting.
- (*21) End of pipe Water Quality Based Limit (WQBL) monthly average in terms of
 mass, lbs/day. The mass limit is determined by using the mass balance
 equations above. Monthly average WQBL, ug/l/1000 X facility flow, MGD X
 8.34 = monthly average WQBL, lbs/day.
- (*22) End of pipe Water Quality Based Limit (WQBL) monthly average in terms of
 mass, lbs/day. Mass limit is determined by using the mass balance
 equations above. Daily maximum WQBL, ug/1/1000 X facility flow, MGD X
 8.34 = daily maximum WQBL, lbs/day.
- (*23) Indicates whether the screened effluent value(s) need water quality based limits for the parameter of concern. A "yes" indicates that a water quality based limit is needed in the permit; a "no" indicates the reverse.

APPENDIX B

November 7, 2005

Louisiana Department of Environmental Quality Via E-mail: Scott.Guilliams@LA.GOV

Office of Environmental Services

Permits Division
Post Office Box 4313

Baton Rouge, Louisiana 70821-4313

Attn: Mr. Scott Guilliams

Ref: Total Dissolved Solid Results from Ten-Month Sampling Event

LPDES Permit No. LA0050695

LDEQ Al No. 27823

Dear Mr. Guilliams:

As requested in the July 23, 2004 meeting, Air Liquide Large Industries U.S LP (Air Liquide) conducted a ten-month TDS sampling event at the Plaquemine Facility. The sampling event was conducted in order to determine plausible TDS limits at Outfall 001 based on the water quality concentrations of Air Liquide's Outfall 001 receiving stream, Bayou LaButte.

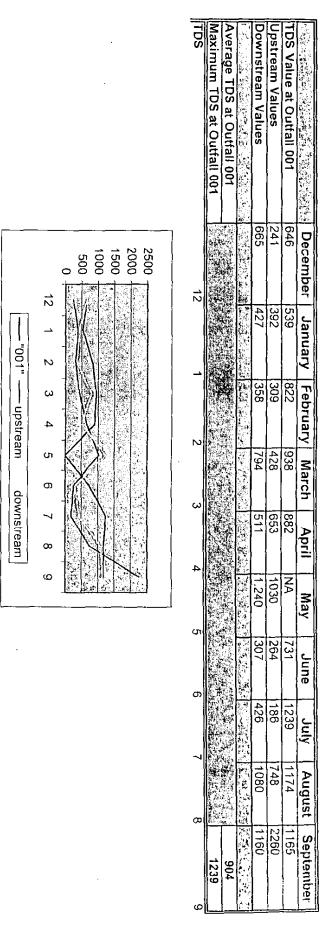
Upstream and downstream samples were collected from December to September. The distance from the mouth of Air Liquide's effluent tributary was greater than 100 feet for upstream and downstream locations.

Enclosed are the TDS results for the upstream location, the downstream location, and at Outfall 001 for the past ten months. In addition, also enclosed are proposed average and maximum TDS limits derived from the Water Quality Screen spreadsheet (see attached). Based on the "Permitting Guidance Document for Implementing Louisiana Surface Water Quality Standards Water Quality Management Plan Volume 3" default values were applied for critical flow and harmonic mean.

All sampling was performed by Quaternary Resource Investigations, L.L.C. (QRI) and analysis was completed by Sherry Laboratories of Lafayette, LA.

Air Liquide would like to request a meeting after the Louisiana Department of Environmental Quality has thoroughly reviewed the results. We thank you for allowing this interim in order to conduct this sampling event. If you have any questions or require additional information, please feel free to contact me at (713) 402-2397 or Kema L. LaCaze at (225) 292-1400.

Very truly yours,


Terry Vaughn Environmental Specialist, HSE Large Industries Air Liquide Large Industries U.S. LP

KLL:TV

Enc: As stated

cc:

Robyn Duhé – Air Liquide, Plaquemine Facility Kema L. LaCaze – Quaternary Resource Investigations, L.L.C

wqsmodn.wk4
Developer: Bruce Fielding
Software: Lotus 4.0
Revision date: 12/13/02 Date: 12/15 Time: 01:20 PM

Appendix A-1 Water Quality Screen with

P

Revision date: 12/13/02	
Water Quality	Screen for Air Liquide
Input variables:	_
Receiving Water Characteristics:	Dilution:
	ZID Fs = 0.1
Receiving Water Name= Air Liquide	21D 13 - 0.1
	MZ Fs = 1
Critical flow (Qr) cfs= 0.1	
Harm. mean/avg tidal cfs= 1	Critical Qr $(MGD) = 0.06463$
Drinking Water=1 HHNPCR=2	Harm. Mean $(MGD) = 0.6463$
Marine, l=y, 0=n	ZID Dilution = 0.990155
Rec. Water Hardness= 348	MZ Dilution = 0.909562
Rec. Water TSS= 12.2	HHnc Dilution= 0.909562
Fisch/Specific=1,Stream=0	HHc Dilution= 0.501427
Diffuser Ratio=	ZID Upstream = 0.009943
2222000	MZ Upstream = 0.099431
Effluent Characteristics:	MZhhnc Upstream= 0.099431
Permittee= Air Liquide	Mainine opsercam 0.055451
Permit Number=	Michael III-thorn
Facility flow (Qef), MGD= 0.65	MZhhc Upstream= 0.994308
	ZID Hardness=
Outfall Number = 001	MZ Hardness=
Eff. data, 2=lbs/day	ZID TSS=
MQL, 2=lbs/day 1	MZ TSS=
Effluent Hardness=	Multipliers:
Effluent TSS=	WLAa> LTAa 0.32
WQBL ind. 0=y, 1=n	WLAc> LTAc 0.53
Acute/Chr. ratio 0=n, 1=y 0	LTA a,c>WQBL avg 1.31
Aquatic, acute only1=y,0=n	LTA a,c>WQBL max 3.11
2-1	LTA h> WQBL max 2.38
Page Numbering/Labeling	WQBL-limit/report 2.13
Appendix Appendix A-1	WLA Fraction 1
Page Numbers 1=y, 0=n 1	WQBL Fraction 1
	MQDD Flaction 1
Input Page # 1=y, 0=n 1	Commandiana
	Conversions:
Fischer/Site Specific inputs:	ug/L>lbs/day Qef0.005421
Pipe=1, Canal=2, Specific=3	ug/L>lbs/day Qeo 0
Pipe width, feet	ug/L>lbs/day Qr 0.000834
ZID plume dist., feet	lbs/day>ug/L Qeo184.4678
MZ plume dist., feet	lbs/day>ug/L Qef184.4678
HHnc plume dist., feet	diss>tot l=y0=n 1
HHc plume dist., feet	Cu diss->tot1=y0=n 1
1	cfs>MGD 0.6463
Fischer/site specific dilutions:	
F/specific ZID Dilution =	Receiving Stream:
F/specific MZ Dilution =	Default Hardness= 25
	Default TSS= 10
F/specific HHnc Dilution=	
F/specific HHc Dilution=	99 Crit., 1=y, 0=n 1

(*1) Toxic	(*2) (*3) (*4) (*5) (*6) (*7 CuEffluent Effluent MQLEffluent 95th %
Parameters	Instream /Tech /Tech 1=No 95% estimat Conc. (Avg) (Max) 0=95% Non-Tech
NONCONVENTIONAL Total Phenols (4AAP) 3-Chlorophenol 4-Chlorophenol 2,3-Dichlorophenol 2,5-Dichlorophenol 2,6-Dichlorophenol 3,4-Dichlorophenol 2,4-Dichlorophenocy- acetic acid (2,4-D) 2-(2,4,5-Trichlorophenoxy) propionic acid (2,4,5-TP, Silvex)	ug/L ug/L ug/L ug/L ug/L ug/L 5 10 10 10 10 10 10
METALS AND CYANIDE Total Arsenic Total Cadmium Chromium III Chromium VI Total Copper Total Lead Total Mercury Total Nickel Total Zinc Total Cyanide	10 1 10 10 10 5 0.2 40 20
DIOXIN 2,3,7,8 TCDD; dioxin	1.0E-005
VOLATILE COMPOUNDS Benzene Bromoform Bromodichloromethane Carbon Tetrachloride Chloroform Dibromochloromethane 1,2-Dichloroethane	10 10 10 10 10 10
1,1-Dichloroethylene 1,3-Dichloropropylene Ethylbenzene	10 10 10
Methyl Chloride Methylene Chloride 1,1,2,2-Tetrachloro-	50 20
ethane	10

(*1) Toxic Parameters	(*12 WLA Acut	a WLA	c WLA	•	a LTA	LTAh
NONCONVENTIONAL	ug/	L ug/	L ug/	L ug/l	L ug/i	L ug/L
Total Phenols (4AAP)	706.9602		54.97154	226.2272	203.9444	54.97154
3-Chlorophenol						
4-Chlorophenol	386.8082	211.0907		123.7786	111.8781	
2,3-Dichlorophenol 2,5-Dichlorophenol						
2,6-Dichlorophenol 3,4-Dichlorophenol						
2,4-Dichlorophenocy-						
acetic acid (2,4-D) 2-(2,4,5-Trichlorophen-	-					
oxy) propionic acid (2,4,5-TP, Silvex)		-				
METALS AND CYANIDE						
Total Arsenic		320.4458		213.3859		
Total Cadmium		11.06428		154.1861		
Chromium III		2718.836		2463.741		
Chromium VI		11.63418		5.077832		
Total Copper	180.3433			57.70985		
Total Lead		58.56412			31.03898	
Total Mercury		0.040149		1.705392		
Total Nickel		1209.362		3200.997		
Total Zinc		1205.533		388.0744		
Total Cyanide	46.35639	5.71704	14121.09	14.83404	3.030031	14121.09
DIOXIN						
2,3,7,8 TCDD; dioxin		-	0.000001			0.000001
VOLATILE COMPOUNDS						
Benzene	2271.362	1236.86	24.92885	726.8358	655.5356	24.92885
Bromoform				946.9226		69.20248
Bromodichloromethane			6.581215			6.581215
Carbon Tetrachloride	2757.145	1500.723	2.393169	882.2863	795.3832	2.393169
Chloroform				933.9954		
Dibromochloromethane			10.13108			10.13108
1,2-Dichloroethane	11917.33	6486.642	13.56129	3813.545	3437.92	13.56129
1,1-Dichloroethylene				374.8909		
1,3-Dichloropropylene				195.8482		
Ethylbenzene				1034.182		
Methyl Chloride		30234.35			16024.2	
Methylene Chloride	19491.9	10609.51	173.5048	6237.408	5623.039	173.5048
1,1,2,2-Tetrachloro-						
ethane	941.2669	512.3347	3.589754	301.2054	271.5374	3.589754

(*1) Toxic	(*2) (*3) (*6) (*7
Parameters	CuEffluent Instream /Tech Conc. (Avg	/Tech	LEffluent 95th % 1=No 95% estimat 0=95 % Non-Tech
•	ug/L ug/L		
VOLATILE COMPOUNDS (cont	'd)		
Tetrachloroethylene Toluene		10 10	
1,1,1-Trichloroethane		10	
1,1,2-Trichloroethane Trichloroethylene		10 10	
Vinyl Chloride		10	
ACID COMPOUNDS			
2-Chlorophenol 2,4-Dichlorophenol		10 10	
		10	
BASE NEUTRAL COMPOUNDS Benzidine		50	
Hexachlorobenzene		10	
Hexachlorabutadiene		10	
PESTICIDES			
Aldrin		0.05	
Hexachlorocyclohexane (gamma BHC, Lindane)		0.05	
Chlordane		0.2	
4,4'-DDT 4,4'-DDE		0.1 0.1	
4,4'-DDD		0.1	
Dieldrin Endosulfan		0.1 0.1	
Endrin		0.1	
Heptachlor		0.05	
Toxaphene		5	
Other Parameters:			
Fecal Col.(col/100ml) Chlorine			
Ammonia			
Chlorides Sulfates			
TDS	904000	1239000	1
Goldbook Values:			

(*1) Toxic Parameters	(*12) WLA Acute	a WLA	WLA	h LTA	a LTA	LTAh
	ug/l	L ug/l	L ug/l	L ug/I	L ug/l	L ug/L
Tetrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Vinyl Chloride	1282.628 5332.499 1817.898	698.1385 2902.497 989.4877	50793.7 13.76072	410.4409 1706.4 581.7272	1538.324 524.4285 1136.262	50793.7 13.76072
ACID COMPOUNDS 2-Chlorophenol 2,4-Dichlorophenol		141.8266 111.0425			75.16808 58.85253	138.968 255.7276
BASE NEUTRAL COMPOUNDS Benzidine Hexachlorobenzene Hexachlorabutadiene			0.000499		72.83729 0.594352	0.000499
PESTICIDES Aldrin Hexachlorocyclohexane (gamma BHC, Lindane) Chlordane 4,4'-DDT 4,4'-DDE 4,4'-DDD Dieldrin Endosulfan Endrin Heptachlor	0.030298 0.23976 0.222187 0.087259 0.52517	0.23088 0.004728 0.001099 11.54402 0.006597 0.061238 0.061568 0.041229 0.004178	0.000379 0.000379 0.000538 0.0001 0.703636 0.285852 0.00014	1.712863 0.775636 0.3555 16.96704 0.009695 0.076723 0.0711 0.027923 0.168055	0.122367 0.002506 0.000583 6.118332 0.003496 0.032456 0.032631 0.021851 0.002214	0.0001 0.703636 0.285852 0.00014
Toxaphene	0.737258	0.00022	0.000479	0.235923	0.000117	0.000479
Other Parameters: Fecal Col.(col/100ml) Chlorine Ammonia Chlorides Sulfates TDS		4397.723				

November 17, 2005

Louisiana Department of Environmental Quality Office of Environmental Services Permits Division Post Office Box 4313 Baton Rouge, Louisiana 70821-4313

Attn: Ms. Jenniffer Sheppard

Ref: Revised Water Quality Screen Spreadsheet

LPDES Permit No. LA0050695

LDEQ AI No. 27823

Dear Ms. Sheppard:

Air Liquide Large Industries U.S. LP (Air Liquide) has enclosed with this letter a revised Water Quality Screen (WQS) spreadsheet that was initially presented to the Louisiana Department of Environmental Quality (LDEQ) on November 7, 2005. In accordance with LAC 33:IX.1123, this revision is being submitted in order to allow for a set TDS value (300 mg/L) be applied in the facility's subsegment code, 120201. The WQS spreadsheet submitted beforehand allowed for the universal value of 260 mg/L to remain.

Via E-mail: Jenniffer.Sheppard@LA.GOV

If you have any questions, please feel free to contact me at (713) 402-2397 or Kema L. LaCaze at (225) 292-1400.

Very truly yours,

Terry Vaughn

Environmental Specialist, HSE Large Industries

Air Liquide Large Industries U.S. LP

KLL:TV

Enc: As stated

C: Robyn Duhé - Air Liquide, Plaquemine Facility

Kema L. LaCaze - Quaternary Resource Investigations, L.L.C

Date: 12/15 wqsmodn.wk4 Appendix A-1

Developer: Bruce Fielding Time: 01:21 PM Software: Lotus 4.0 Water Quality Screen with

F/specific HHnc Dilution= F/specific HHc Dilution=

Software: Lotus 4.0		0	
Revision date: 12/13/02			
	er Quality S	creen for Air Liquide	
Input variables:			
Receiving Water Characteristic	es:	Dilution:	
		ZID Fs =	0.1
Receiving Water Name= Air I	iquide		
	0.1	MZ Fs =	1
Harm. mean/avg tidal cfs=	1	Critical Qr (MGD) = 0	· ·
Orinking Water=1 HHNPCR=2	•	Harm. Mean (MGD) =	
Marine, 1=y, 0=n			990155
	348	MZ Dilution = 0.9	
	2.2	HHnc Dilution= 0.9	
Fisch/Specific=1,Stream=0	-2.2		501427
oiffuser Ratio=			
Tiluser Ratio=		ZID Upstream = 0.0	009743 000131
effluent Charagtaristics.		MZ Upstream = 0.0 MZhhnc Upstream= 0.0	
Gffluent Characteristics:	imido	Mainine opscream= 0.	033431
	iquide		
Permit Number=	٠	Michha Imatwaam 0	004200
facility flow (Qef),MGD=	0.65	MZhhc Upstream= 0.9 ZID Hardness=	994308
N. L. E 1. 1. N	0.01		
outfall Number =	001	MZ Hardness=	
Eff. data, 2=lbs/day	,	ZID TSS=	
QL, 2=lbs/day	1	MZ TSS=	
ffluent Hardness=		Multipliers:	
Effluent TSS=		WLAa> LTAa	0.32
QBL ind. $0=y$, $1=n$		WLAC> LTAC	0.53
cute/Chr. ratio 0=n, 1=y	0	LTA a,c>WQBL avg	1.31
.quatic,acute only1=y,0=n		LTA a,c>WQBL max	3.11
		LTA h> WQBL max	2.38
age Numbering/Labeling		WQBL-limit/report	2.13
	ndix A-1	WLA Fraction	1
age Numbers 1=y, 0=n	1	WQBL Fraction	1
nput Page # 1=y, 0=n	1		
		Conversions:	
Fischer/Site Specific inputs:		ug/L>1bs/day Qef0.	
pipe=1, Canal=2, Specific=3		ug/L>1bs/day Qeo	
pipe width, feet		ug/L>1bs/day Qr 0.0	
ID plume dist., feet		lbs/day>ug/L Qeol8	
IZ plume dist., feet		lbs/day>ug/L Qef18	4.4678
Hnc plume dist., feet		diss>tot 1=y0=n	1
Hc plume dist., feet		Cu diss->totl=y0=n	1
		cfs>MGD	0.6463
Fischer/site specific dilution	ns:		
F/specific ZID Dilution =		Receiving Stream:	
s/specific MZ Dilution =		Default Hardness=	25
R/anagifia WUna Dilution-		Dofault TCC-	10

Default TSS=

99 Crit., 1=y, 0=n

10

1

₽

(*1) Toxic	(*2) (*3) (*4) (*5) (*6) (*7 CuEffluent Effluent MQLEffluent 95th %
Parameters	Instream /Tech /Tech 1=No 95% estimat Conc. (Avg) (Max) 0=95% Non-Tech
NONCONVENTIONAL	ug/L ug/L ug/L ug/L ug/L
Total Phenols (4AAP)	5
3-Chlorophenol	10
4-Chlorophenol	10
2,3-Dichlorophenol	10
2,5-Dichlorophenol	10
2,6-Dichlorophenol	10
3,4-Dichlorophenol	10
2,4-Dichlorophenocy-	
acetic acid (2,4-D)	
2-(2,4,5-Trichlorophen-	
oxy) propionic acid	
(2,4,5-TP, Silvex)	
METALS AND CYANIDE	
Total Arsenic	10
Total Cadmium	1
Chromium III	10
Chromium VI	10
Total Copper	10
Total Lead	5
Total Mercury	0.2
Total Nickel	40
Total Zinc	20
Total Cyanide	20
DIOXIN	
2,3,7,8 TCDD; dioxin	1.0E-005
,,,,,,	2.02 003
VOLATILE COMPOUNDS	
Benzene	10
Bromoform	10
Bromodichloromethane Carbon Tetrachloride	10
Chloroform	10
Dibromochloromethane	10 10
1,2-Dichloroethane	10
1,1-Dichloroethylene	10
1,3-Dichloropropylene	10
Ethylbenzene	10
Methyl Chloride	50
Methylene Chloride	20
1,1,2,2-Tetrachloro-	
ethane	10

(*1) Toxic Parameters	(*12 WLA Acut	a WLA	c WLA	h LTA	a LTA	c LTAh
NONGOVE COMPTON A L	ug/	L ug/	L ug/	L ug/	L ug/i	L ug/L
NONCONVENTIONAL Total Phenols (4AAP)	706.9602	384.8008	54.97154	226.2272	203.9444	54.97154
3-Chlorophenol						
4-Chlorophenol		211.0907		123.7786		
2,3-Dichlorophenol		-				
2,5-Dichlorophenol						
2,6-Dichlorophenol						
3,4-Dichlorophenol 2,4-Dichlorophenocy-						
acetic acid (2,4-D) 2-(2,4,5-Trichlorophen-				and any sage		
oxy) propionic acid						
(2,4,5-TP, Silvex)						
METALS AND CYANIDE	cčc 0200	200 4450		222		
Total Arsenic		320.4458		213.3859		
Total Cadmium		11.06428		154.1861		
Chromium III		2718.836 11.63418		2463.741		
Chromium VI				5.077832		
Total Copper Total Lead	180.3433	117.322 58.56412		57.70985 441.77		
Total Lead Total Mercury		0.040149		1.705392		
Total Mercury Total Nickel		1209.362		3200.997		
Total Zinc		1205.533		388.0744		
Total Cyanide				14.83404		
rocar cyanzac	10.55055	3.71701	11121.05	14.05101	3.030031	11121.05
DIOXIN						
2,3,7,8 TCDD; dioxin			0.000001			0.000001
. , .						
VOLATILE COMPOUNDS						
Benzene	2271.362			726.8358		
Bromoform	2959.133	1610.666	69.20248	946.9226		
Bromodichloromethane			6.581215			6.581215
Carbon Tetrachloride				882.2863		
Chloroform	2918.735			933.9954		
Dibromochloromethane			10.13108			10.13108
1,2-Dichloroethane				3813.545		
1,1-Dichloroethylene				374.8909		
1,3-Dichloropropylene				195.8482		
Ethylbenzene				1034.182		8905.389
Methyl Chloride		30234.35		17775		172 5040
Methylene Chloride 1,1,2,2-Tetrachloro-	13431.9	10009.51	1/3.5048	6237.408	5023.039	1/3.5048
ethane	941 2669	510 33/7	3 500754	301.2054	271 5274	3 589754
e chane	J-1.2003	J14.JJ4/	5.505/54	JUI. 2034	211.0014	5.565/54

(*1) Toxic Parameters	(*2) (*3) CuEffluent Effi Instream /Tech /T Conc. (Avg) ug/L ug/L	Tech 1=No 95% est: (Max) 0=95% Non-7	imat
VOLATILE COMPOUNDS (cont Tetrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Vinyl Chloride	.'d)	10 10 10 10 10	
ACID COMPOUNDS 2-Chlorophenol 2,4-Dichlorophenol		10 10	
BASE NEUTRAL COMPOUNDS Benzidine Hexachlorobenzene Hexachlorabutadiene		50 10 10	
PESTICIDES Aldrin Hexachlorocyclohexane (gamma BHC, Lindane) Chlordane 4,4'-DDT 4,4'-DDE 4,4'-DDD Dieldrin Endosulfan Endrin Heptachlor		0.05 0.05 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1	
Toxaphene		5	
Other Parameters: Fecal Col.(col/100ml) Chlorine Ammonia Chlorides Sulfates TDS Goldbook Values:	904000 123	39000 1	

(*1) Toxic Parameters	(*12 WLA Acut	a WLA	c WLA	h LTA	a LTA	LTAh
	ug/	L ug/I	L ug/	L ug/I	L ug/l	L ug/L
Tetrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Vinyl Chloride	1282.628 5332.499 1817.898	698.1385 2902.497 989.4877 2143.89	50793.7 13.76072	581.7272 1260.409	370.0134 1538.324 524.4285 1136.262	50793.7 13.76072
ACID COMPOUNDS 2-Chlorophenol 2,4-Dichlorophenol				83.3809 65.28272		
BASE NEUTRAL COMPOUNDS Benzidine Hexachlorobenzene Hexachlorabutadiene	252.4858 5.15071		0.000499			0.000499
PESTICIDES Aldrin Hexachlorocyclohexane (gamma BHC, Lindane) Chlordane 4,4'-DDT 4,4'-DDE 4,4'-DDD Dieldrin Endosulfan Endrin Heptachlor Toxaphene	5.352698 2.423863 1.110937 53.02201 0.030298 0.23976 0.222187 0.087259	0.23088 0.004728 0.001099 11.54402 0.006597 0.061238 0.061568 0.041229 0.004178	0.398862 0.000379 0.000379 0.000538 0.0001 0.703636 0.285852 0.00014	16.96704 0.009695 0.076723	0.122367 0.002506 0.000583 6.118332 0.003496 0.032456 0.032631 0.021851 0.002214	0.000379 0.000379 0.000379 0.000538 0.0001 0.703636 0.285852 0.00014
Other Parameters: Fecal Col.(col/100ml) Chlorine Ammonia Chlorides Sulfates TDS		4397.723 19943.08 			2330.793 10569.83	

RTIS ENVIRONMENTAL SERVICES, INC.

WATER/WASTEWATER TESTING-CONSULTING-OPERATION-BIOASSAY 71351 POLTEVENT ST. 85 BELLE TERRE BLVD. STE. D P. O. BOX 485

ABITA SPRINGS, LA 70420 PHONE # 985-892-3567

LAPLACE, LA 70068 PHONE # 985-653-0000 FAX # 985-653-0001

DEQ LAB CERT #01984

DHH CERT. # LA05001

OPERATION CERT. #14-427

LPDES PERMIT #LA0050695 REPORT DATE: 12/5/2005

PRELIMINARY REPORT PLAQ. Facility-001 Combined Outfall

Ginger Curtis, Executive Assistant

APPROVED BY: FACILITY:

All CES Sampling Analyses Adhere To EPA Protocol, Any Questions, Please Contact CES AT 885-653-0000.

	Lab Ref AB48374	Collection Date: 12/1/2005	12/1/2005 Sa	Sample Collector: PJ	£			
THE PERSON OF THE PARTY OF THE	100 St. 545 LT.				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		A Company of the Comp	Programme and the contract of
Analysis	ris	Units	Re	MDL	Tech	Start Date	Start Time	MDL Tech Start Date Start Time Method Reference
TOT	TOTAL DISSOLYED SOLIDS	L/gm	9611	0.1	9	CD 12/5/2005	1:30:00 PM	1:30:00 PM SM18-2540C

おがれの場合でものできる。 ともか からずるなか

31

PAL001

Sent By: CES, Inc.;

AIR LIQUIDE 57805 EVERGREEN ROAD PLAQUEMINE, LA 70764

CLIENT:

986

URTIS ENVIRONMENTAL SERVICES, INC. WATER / WASTEWATER TESTING - CONSULTING - OPERATION - BIOASSAY

ABITA SPRINGS, LA 70420 PHONE # 985-892-3567 71351 POLTEVENT ST. 185 BELLE TERRE BLVD. LAPLACE, LA 70068 PHONE # 985-653-0000 P. O. BOX 485

DEQ LAB CERT.#01984

DHH CERT. # LA05001 OPERATION CERT. #14-427

LPDES PERMIT # LA0050695

REPORT DATE: 12/5/2005

PRELIMINARY REPORT PLAQ, FAC. - 101 Process Condensate

Ginger Curtis, Executive Assistant

APPROVED BY: FACILITY:

All CES Sempling Analyses Adhere To EPA Protocol, Any Questions, Please Contact CES AT 985-651-0000.

100	Lab Ref AB48373 Coll	Collection Date: 12/1/2005	12/1/2005	Sample Collector: PJ	P				
0 8	_	ction Time:	Collection Time: 12:38:00 PM	Comment:	2564280 C. C.		The state of the s	त्राच्या करणे कार्या के निर्माण के कार्या के तिस्ता कार्या कार्या कार्या कार्या के किया किया कार्या के किया कि	10
G Analysis	alysis	Units	Results	MDL	Tech	MDL Tech Start Date	Start Time	Start Time Method Reference	
9 TOTAL DISSOLVED	٠,	l/gm	1307	1.0	e	CD 12/5/2005	1:30:00 PM	SOLIDS mg/l 1307 1.0 CD 12/5/2005 1:30:00 PM SM18-2540C	ī

SHAME STORY OF THE STREET STREET, THE SHAME SHAME STREET, THE SHAME SHAME STREET, THE SHAME SHAM

PAL 101

Page 1 of 1

AIR LIQUIDE 57805 EVERGREEN ROAD PLAQUEMINE, LA 70764

CLENT

FAX # 985-653-0001

DEQ LAB CERT.#01984 WATER / WASTEWATER TESTING - CONSULTING - OPERATION - BIOASSAY 71351 POITEVENT ST.
ABITA SPRINGS, LA 70420
PHONE # 985-892-3567 185 BELLE TERRE BLVD.

PHONE # 985-653-0000 FAX # 985-653-0001 LAPLACE, LA 70068 STE. D P. O. BOX 485

AIR LIQUIDE 57805 EVERGREEN ROAD PLAQUEMINE, LA 70764 CLER

REPORT DATE: 12/5/2005

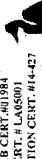
LPDES PERMIT #

PACIL: PLAQ. Facility Make up Well Water APPRO BY:

Ginger Curits, Executive Assistant

All CES Sampling Analyses Adhere To EPA Protocol, Any Queedions, Please Contact CES AT 985-653-0000.

PRELIMINARY REPORT


Ref AB48372	Collection Date:	12/1/2005	Sample Collector: PJ	PJ				
in# 62419-03	Collection Time: 12:30:00 PM	12:30:00 PM	Comment	elakish distrakla	ف الديمية المراجعة المراجعة الم	A TOTAL COMMENT OF THE PROPERTY OF STREET	Comments	6 17 18 28
Ansl	Units	Results	MDL	Tech	MDL Tech Start Date	Start Time	Start Time Method Reference	
TODISSOLVED SOLIDS	/£m	464	1.0	9	CD 12/5/2005	1:30:00 PIV	CD 12/5/2005 1:30:00 PM SM18-2540C	

IRTIS ENVIRONMENTAL SERVICES, INC. WATER/WASTEWATER TESTING - CONSULTING - OPERATION - BIOASSAY

185 BELLE TERRE BLVD. STE. D P. O. BOX 485 LAPLACE, LA 70068

71351 POITEVENT ST. ABITA SPRINGS, LA 70420 PHONE # 985-892-3567

DEQ LAB CERT.#01984 DHH CERT. # LA05001

OPERATION CERT. #14-427

LPDES PERMIT #LA0050695 REPORT DATE: 1/27/2006

FACILITY: PLAQ. FAC. - 101 Process Condensate APPROVED BY:

AIR LIOUIDE 57805 EVERGREEN ROAD PLAQUEMINE, LA 70764

CLIENT:

Ginger Curls, Executive Assistant

All CES Sampling Analyses Adhere To EPA Protocol, Any Questions, Please Contact CES AT 985-653-0000.

Lab Rcf AB50398 Chain # 62371-01	Collection Date: 1/5/2006 Collection Time: 11:00:00 AM	1/5/2006 11:00:00 AM	Sample Collector: PJ Comment:	2			
Analysis	Units	Results	MDL	J.cch	MDL Tech Start Date	Start Time	Start Time Method Reference
OIL AND GREASE	l/gm	PENDING	2		1/1/1981	12:00:00	12:00:00 AM SM18-5520B
TOTAL ORGANIC CARBON	1/Rw	PENDING	2		1/1/1981	(2:00:00	2:00:00 AM SM18-5310B
PH-HYDROGEN ION CONTENT	as	PENDING	Si Si		1:1/1981	12:00:00	2:00:00 AM SM18-4500HB
SYSTEM FLOW RATE	MGD	PENDING	5		1861/171	12:00:00 AM	4M

Lab Ref AB50588	Collection Date: 1/10/2006	1/10/2006	Sample Collector: DF	F. D.F.			
Citation 65210	Collection Higgs.	12.00.00.21	Commali.				
Analyšis	Units	Results	MDL	Tech	Start Date	Start Time	MDL Tech Start Date Start Time Method Reference
HARDNESS(as CaCO3)	l⁄am	740	1.0	DH	DH 1/11/2006	10:00:00 A	10:00:00 AM SM19-2340C
TOTAL SUSPENDED SOLIDS	hgm	₹.	1.0	ડા	1/11/2006	9:00:00 AN	9:00:00 AM SM18-2540D
TOTAL DISSOLVED SOLIDS	[40]	1402	1.0	DH	1/3 1/2006	10:15:00 A	DH 1/11/2006 10:15:00 AM SM18-2540C

IPAL 101

Page 1 of 3

PHONE # 985-653-0000 EAX # 985-653-0001

٠	
	Ξ

Lab Ref AB5080 Chain # 62316-0	Cdon Date: 1/16/2006 Cdon Time: 2:00:00 PN	Gáon Date: 1/16/2006 Gáon Time: 2:00:00 PM	Sample Collector: PJ Comment: speci	or: PJ special sad	ir: PJ special sample as of robin		
Analysis	Units	Results	TON:	İ	Tech Start Date	Start Time N	Start Fime Method Reference
HARDNESS(as CaCO3	l/gm	720	0.1	НQ	1/17/2006	1:00:00 PM	SM19-2340C
TOTAL DISSOLVED SOLIDS	Väw.	1357	1.0	HCI	1/17/2006	1:15:00 PM	SM18-2540C
TOTAL SUSPENDED SOLIDS	1/300	7	1.0	rs T	1/18/2006	7:35:00 AM	SM18-2540D
Lab Ref AB50943 Chain # 63368-43	Cdon Date: 1/17/2006 Cdon Time: 1:10:00 P	Cdon Date: 1/17/2006 Cdon Time: 1:10:00 PM	Sanple Collector. PJ Comment: PLAn	or. PJ PLANT EFF.	ار د د		
Analysis	Units	Results	MDL	İ	Tech Start Date	Start Time N	Start Time Method Reference
HARDNESS(as CaCO3	l/gm	095	0.1	H	1/17/2006	9:05:00 AM	9:05:00 AM SM19-2340C
TOTAL DISSOLVED IOLIDS	l/gm	1274	0.1	HO	1/18/2006	10:00:00 AM	10:00:00 AM SM18-2540C
TOTAL SUSPENDED SOLIDS	mg/i	12	1.0	1.5	1/18/2006	7:45:00 AM	7:45:00 AM SM18-2540D

₽age 3√4

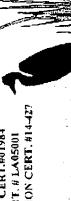
168:31 30-75-neL

1000 628 286

Sent By: CES, Inc.;

IIS ENVIRONMENTAL SERVIC

WATER / WASTEWATER TESTING - CONSULTING - OPERATION - BIOASSAY 185 BELLE TERRE BLVD.


71351 POITEVENT ST.
ABITA SPRINGS, LA 70420
PHONE # 985-892-3567

PHONE # 985-653-0000 LAPLACE, LA 70068

STE. D P. O. BOX 485

FAX # 985-653-0001

OPERATION CERT, #14-427 DEQ LAB CERT.#01984 DHH CERT. # LA05001

LPDES PERMIT #LA0050695 REPORT DATE: 1/27/2006

> PLAQ. Facility-001 Combined Outfall FAÇILITY: PL APPROVED BY:

Ginger Curtis, Exacutive Assistant

All CES Sampling Analyses Adhere To EPA Protocol, Any Questions, Please Contact CES AT 985-853-0006,

Lab Ref AB50399 Chain # 62371-04	Collection Date: 1/5/2006 Collection Time: 11:00:00 AM	1/5/2006 11:00:00 AM	Sample Collector: PJ Comment:	E.		
Analysis	Units	Results	JUM	Tech	MOL Tech Start Date	Sign Time Method Reference
OIL AND GREASE	ng/n	PENDING	. 9		1.861/1/1	12:00:00 AM SM18-5520B.
TOTAL ORGANIC CARBON	l'agui	PENDING	9		1861/1/1	12:00:00 AM SM18-5310B
PII-HYDROGEN ION CONTENT	ns	PENDING	57		1/1/1681	12:00:00 AM SM18-4500HB
SYSTEM FLOW RATE	MGD	PENDING	5		1861/1/1	12:00:00 AM

	Start Time Method Reference	10:00:00 AM SM19-2340C	9:00:00 AM SM18-2540D	10:15:00 AM SM18-2540C
	MDI, Tech Start Date	1/11/2006	1/11/2006	9002/11/1
DF	Tech	DH	ĽS	DH
Sample Collector: DF Comment:	MDI,	1.0	1,0	1.0
1/10/2006 11:50:00 AM	Results	260	==	1135
Collection Date: 1/10/2006 Collection Time: 11:50:00 AM	Units	l/gai	f/gm	l/gm
Lab Ref AB50589 Chain # 63218	Analysis	HARDNESS(as CaCO3)	TOTAL SUSPENDED SOLIDS	· TOTAL DISSOLVED SOLIDS

Page 1 of 3

S780S EVERGREEN ROAD PLAQUEMINE, LA 70764

AIR LIQUIDE

CLEENT:

LL	Lab Ref AB50888 Chain # 62316-03	Collection Date: Collection Time:	1/16/2006 2:22:00 PM	Sample Collector: PJ Comment: speci	. P.) pecial sar	r: PJ special sample as per robin	u	
Analysis	sis	Umits	Results	MDL	Tech	Start Date	Start Time	Meth
HAR TOT	HARDNESS(as CaCO3) TOTAL SUSPENDED SOLIDS TOTAL DISSOLVED SOLIDS	Ngm \gm	550 8 1154	1.0	HO S71	1/17/2006 1/18/2006 1/17/2006	1:00:00 PM 7:35:00 AM 1:15:00 PM	ঠে ঠ ঠ
<u> </u>	Lab Ref AB50942 Chain # 63368-01	Collection Date: Collection Time:	1/13/2006 1:05:00 PM	Sample Collector: PJ Comment: COM	r: PJ COMBINED	٥		
Analysis	sisk	Units	Results	MDI.	Tech	Start Date	Start Time	Methi
HAR TOT TOT	HARDNESS(as CaCO3) TOTAL SUSPENDED SOLIDS TOTAL DISSOLVED SOLIDS	mg/l mg/l mg/l	680 5 1078	1,0	HO ST	1/17/2006	9:05:00 AM Sh 7:45:00 AM Sh 10:00:00 AM Sh	S
	Lab Ref ABS1504 Chain# 62188-01	Collection Date; Collection Time:	1/26/2006 1:00:00 PM	Sample Collector: PJ Comment:	r: P3			
Analysis	ysis	Units	Results	MDL	Tech	Start Date	Surt Time	Metho
101	TOTAL DISSOLVED SOLIDS	V du	PENDING	Ş		1/1/1981	12:00:00 AM	N Si

PAL001

APPENDIX C

	_ _		o effi	UENT	
OUTFALL NO.: 101		CONCEN (pp	TRATION,	M (lbs	ASS (Aay)
POLEUTANT.	MQL* (ug/l)	Monthly Average	Daily :Maximum	Monthly Average	Dåily Maximum
OUTFALL NO.: 101 POEEUTANE VOEATILE ORGANIC CHEMICALS EPAIMeth	od 624 suggest	edia-si hasi Agazakarah		Us	ed 1 yr avg flow/of: 4399
acrolein	50		<0.050		<0.19
acrylonitrile	50		<0.050		<0.19
benzene	10		<0.005		<0.02
bromoform	10		<0.005		<0.02
carbon tetrachloride	10		<0.005		<0.02
chlorobenzene	50		<0.005		<0.02
chlorodibromomethane	10		<0.005		<0.02
chloroethane	10		<0.005		<0.02
2-chloroethylvinyl ether	50		<0.010		<0.04
chloroform	10		<0.005		<0.02
dichlorobromomethane	10		<0.005		<0.02
1,1-dichloroethane	10		<0.005		<0.02
1,2-dichloroethane	10		<0.005		<0.02
1,1-dichloroethylene	10		< 0.005		<0.02
1,2-dichloropropane	10		<0.005		<0.02
1,3-Dichloropropylene	10_		<0.005		<0.02
ethylbenzene	10	· · · · · · · · · · · · · · · · · · ·	<0.005		<0.02
methyl bromide	50		<0.005		<0.02
methyl chloride	50		<0.005		<0.02
methylene chloride	20		<0.005		<0.02
1,1,2,2-tetrachloroethane	10		<0.005		<0.02
tetrachloroethylene	10		<0.005		<0.02
toluene .	10		<0.005		<0.02
1,2-trans-dichloroethylene	10		<0.005		<0.02
1,1,1-trichloroethane	10		<0.005		<0.02

			EFFL	UENT	4
OUTFALL NO.: 101		CONCEN (PI	TRATION	M (lbs	ASS /day)
POLEUTANT	MQL* (ug/l)*		[1]。"就是这个人的意思。" 第一个人的意思,但是是一个人的意思。		Daily Maximum
1,1,2-trichloroethane	10		<0.005		<0.02
trichloroethene (trichloroethylene)	10		<0.005	<u></u>	<0.02
vinyl chloride (chloroethylene)	10	portion was a financial to the first transfer	<0.010		<0.04
ACID EXTRACTABLE ORGANIC CHEMICALS	:EPA Method	625 suggested:			Used I yr avg
2-chlorophenol	10		<0.010		<0.04
3-chlorophenol	10		<0.010		<0.04
4-chlorophenol	10		<0.010	· .	<0.04
2,3-dichlorophenol	10		<0.010		<0.04
2,4-dichlorophenol	10		<0.010		<0.04
2,5-dichlorophenol	10		<0.010		<0.04
2,6-dichlorophenol	10		<0.010		<0.04
3,4-dichlorophenol	10	<u> </u>	<0.010		<0.04
2,4-dimethylphenol	10		<0.010		<0.04
2,4-dinitrophenol	50		<0.050		<0.18
2-methyl 4,6-dinitrophenol (4,6-dinitro-o-cresol)	50		<0.020	<u> </u>	<0.07
2-nitrophenol	20		<0.010		<0.04
4-nitrophenol	50	···	<0.020		<0.07
4-chloro-3-methylphenoi (p-chloro-m-cresol)	10		<0.020		<0.07
pentachlorophenol	50		<0.050	·	<0.18
phenol	10		<0.010		<0.04
2,4,6-trichlorophenol	10		<0.010		<0.04

•) EFFI	UENT	
OUTFALL NO.: 101		(CONCEN	EFED TRATION	M Ley(b)	ASS (day)
POLLUTANT RASPANEUER AUF XTRACTABLE ORGANIC	MQL: (ug/l)	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum
BASE/NEUTRAL'EXTRACTABLE ORGANIC	CHEMICALS	EPA Method 625	suggested 📲		Used A yr avg: Klowof :4399
acenaphthene	10		<0.010		<0.04
acenaphthylene	10		<0.010		<0.04
anthracene	10		<0.010		<0.04
benzidine	50		<0.010		<0.04
benzo(a)anthracene	10		<0.010		<0.04
benzo(a)pyrene	10		<0.010	-	<0.04
3,4-benzo fluoranthene	10		<0.010		<0.04
benzo(ghi)perylene	20		<0.010		<0.04
benzo(k)fluoranthene	10		<0.010		<0.04
bis(2-chloroethoxy)methane	10		<0.010		<0.04
bis(2-chloroethyl)ether	10		< 0.010		<0.04
bis(2-chloroisopropyl)ether	10	<u>.,</u>	<0.010	· .	<0.04
bis(2-ethylhexyl)phthalate	0.0055		0.005		0.02
4-bromophenyl phenyl ether	10		<0.010		<0.04
butylbenzyl phthalate	10		<0.010		<0.04
2-chloronaphthalene	10	.	<0.010		<0.04
4-chlorophenyl phenyl ether	10		<0.010		<0.04
chrysene	10		<0.010		<0.04
dibenzo(a,h)anthracene	20		<0.010		<0.04
1,2-dichlorobenzene	10		<0.010		<0.04
1,3-dichlorobenzene	10		<0.010		<0.04
1,4-dichlorobenzene	10		<0.010		<0.04
3,3'-dichlorobenzidine	50		<0.020		<0.07
diethyl phthalate	10	·	<0.010		<0.04
di-n-butyl phthalate			ļ		

			EFFL	UENT	
OUTFALL NO.: 101		Market No.	RATION	in M	(dail)
ZEPOLEUTANT!	MOL:	Monthly Average	DETILY Mexicology	Monthly Average	Dally Maximum
	10		<0.010		<0.04
2,4-dinitrotoluene	10		<0.010		<0.04
2,6-dinitrotoluene	10		<0.010	_	<0.04
di-n-octyl phthalate	10		<0.010		<0.04
1,2-diphenylhydrazine (as azobenzene)	20		<0.010		<0.04
fluoranthene	10		<0.010		<0.04
fluorene	10		<0.010		<0.04
hexachlorobenzene	10		<0.010		<0.04
hexachlorobutadiene	10		<0.010		<0.04
hexachlorocyclopentadiene	10		<0.010		<0.04
hexachloroethane	20		< 0.010		<0.04
indeno(1,2,3-cd)pyrene	20		<0.010		<0.04
isophorone	10		<0.010	·	<0.04
naphthalene	10		<0.010		<0.04
nitrobenzene	10		<0.010		<0.04
N-nitrosodimethylamine	50		<0.010		<0.04
N-nitrosodi-n-propylamine	20		<0.010	-	<0.04
N-nitrosodiphenylamine	20		<0.010	_	<0.04
phenanthrene	10		<0.010		<0.04
ругеле	10		<0.010		<0.04
				1	

1,2,4-trichlorobenzene

•			EFFL	UENT	
OUTFALL NO.: 101		I STATE OF THE PARTY OF THE PAR	TRATIÓN	The second of the second of the second	
POLEUTANT.	MQL*. ∗(ue/l)	Monthly Average	Daily Carl	Monthly Average	Daily & A
PESTICIDES & PCB'S EPA Method 608 required					Used 1 yr avg. flow of 4399
aldrin	0.05		<0.00005		<0.0002
Aroclor 1016 (PCB-1016)	1.0		<0.010		<0.04
Aroclor 1221 (PCB-1221)	1.0		<0.010		<0.04
Aroclor 1232 (PCB-1232)	1.0		<0.010		<0.04
Aroclor 1242 (PCB-1242)	1.0		<0.010		<0.04
Arocior 1248 (PCB-1248)	1.0		<0.010		<0.04
Aroclor 1254 (PCB-1254)	1.0	-	<0.010		<0.04
Aroclor 1260 (PCB-1260)	1.0		<0.010		<0.04
alpha-BHC	0.05		<0.00005		<0.0002
beta-BHC	0.05		<0.00005		<0.0002
delta-BHC	0.05		<0.00005		<0.0002
gamma-BHC	0.05		<0.00005	-	<0.0002
chlordane	0.2		<0.0002		<0.0007
4,4'DDT	0.1	!	<0.0001		<0.0004
4,4'DDE	0.1		<0.0001		<0.0004
4,4'DDD	0.1		<0.0001		< 0.0004
dieldrin	0.1		<0.00005		<0.0002
alpha-endosulfan	0.1		<0.00005	<u> </u>	<0.0002
beta-endosulfan	0.1	·	<0.00005	· · · · · · · · · · · · · · · · · · ·	<0.0002
endosulfan sulfate	0.1		<0.0001		<0.0004
endrin	0.1	<u></u>	<0.00005		<0.0002
endrin aldehyde	0.1		<0.0001		<0.0004
heptachlor	0.05		<0.00005		<0.0002
heptachlor epoxide	0.05		<0.00005		<0.0002

OUTFALL NO.: 101		CONCEN	TRATION	UENT.	ÄSS Zday)
POLEUTANT	MQL*	Monthly	Daily	Monthly; Averages r	Daily Maximum
toxaphene	5.0		<0.0002		<0.0007
2.4-dichlorophenocyacetic acid (2.4-D)	<u></u>				
2-(2,4,5-trich)orophenoxy) propionic acid					
2,3,7,8-tetrachlorodibenzo-p-dioxin - use EPA Method 1613	10 ppq		<0.01		<.04

	<u> </u>	EFFLUENT			
OUTFALL NO.:		CONCEN	TRATION,	M (lb)	ASS (*/ /day)
OUTFALL NO.: POLEUTANT: METALS:CYANIDE AND TOTAL PHENOLS	- MQL* (ug/l)	Monthly: Average	Daily (*) Maximum	Monthly Average	Daily Maximum
METALS CYANIDE AND TOTAL PHENOES	use EPA/Appro	ved Method			
Antimony, Total	60		<0.010		<0.04
Arsenic, Total	0.033		0.010		0.04
Beryllium, Total	5		<0.005		<0.02
Cadmium, Total	1		<0.001		<0.004
Chromium, Total	10		<0.050		<0.19
Chromium, Hexavalent	10		<0.010		<0.04
Copper, Total	0.070		0.010		0.04
Lead, Total	5		<0.004		<0.01
Mercury, Total	0.2		<0.020		<0.07
Nickel, Total [Marine]	5		<0.010	`	<0.04
Nickel, Total [Freshwater]	40		<0.010		<0.04
Selenium, Total	5		<0.010	. !	<0.04
Silver, Total	2		<0.005		<0.02
Thallium, Total	10		<0.010		<0.04
Zinc, Total	0.10		0.030		0.11
Cyanide, Total	20		<0.020		<0.07
Cyanide, Free					
Phenols, Total	5		<0.010		<0.04

OUTFALL NO.:		CONCENTRATION (bpm) (lbs/day)			
		CONCENTRATION (ppm)		MASS. (lbs/day)	
POLLUTANT.	MQL* (ug/l)	Monthly Average	Daily Maximum	Monthly Average	Daily Maximum
MOE* Monthly Daily Monthly Daily Average Maximum Average Maximum ADDITIONAL METALS, IF EXPECTED TO BE PRESENT: Use ERA Approved Method					
Aluminum, Total					
Barium, Total					
Boron, Total					
Cobalt, Total					<u>-</u>
Iron, Total					
Iron, Dissolved					
Magnesium, Total					
Manganese, Total					
Molybdenum	•-				
Tin, Total					
Titanium, Total					

Minimum Quantification Level (MQL).

NA – Not Expected